Optica Publishing Group
Browse

Experimental characterization of isoplanatic patch in mouse cortex using adaptive optics

Version 2 2024-09-04, 14:37
Version 1 2024-09-04, 14:37
Posted on 2024-09-04 - 14:37
Optical microscopy techniques have become essential tools for studying normal and pathological biological systems. However, in many situations, image quality deteriorates rapidly in the field of view due to optical aberrations and scattering induced by thick tissues. To compensate for these aberrations and restore the microscope’s image quality, adaptive optics (AO) techniques have been proposed for the past 15 years. A key parameter for the AO implementation lies in the limited isoplanatic dimension over which the image quality remains uniform. We propose here a method for measuring this dimension and for deducing the anisoplanatism and intensity transmission of the samples. We apply this approach to fixed slices of mouse cortices as a function of their thickness. We find a typical mid-maximum width of 20 µm for the isoplanatic spot, which is independent of sample thickness.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Biomedical Optics Express

AUTHORS (6)

Jean Commère
Marie Glanc
Laurent Bourdieu
Raphaël Galicher
Eric Gendron
Gerard Rousset

CATEGORIES

KEYWORDS

need help?