General theory of asymmetrical polarization-dependent optics in functional material-doped 90° twisted nematic liquid crystals
Posted on 2018-06-19 - 15:22
General theory, which can completely describe the asymmetrical optics in functional material (FM)-doped 90° twisted nematic liquid crystals (TNLCs), is proposed using Cayley–Hamilton theorem and Jones calculus. The FMs, whose shape and size are similar to those of the adopted NLCs, can be aligned along the long axes of the NLCs. The FMs discussed herein are dichroic dye (DD) and polymer. The experimental results of asymmetrical transmission in DD-doped 90° TNLCs are consistent with the theoretical calculation. Such asymmetrical characterization can be further used in the current applications based on 90° TNLCs in all fields to obtain new potential functions.
CITE THIS COLLECTION
DataCiteDataCite
3 Biotech3 Biotech
3D Printing in Medicine3D Printing in Medicine
3D Research3D Research
3D-Printed Materials and Systems3D-Printed Materials and Systems
4OR4OR
AAPG BulletinAAPG Bulletin
AAPS OpenAAPS Open
AAPS PharmSciTechAAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität HamburgAbhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)ABI Technik (German)
Academic MedicineAcademic Medicine
Academic PediatricsAcademic Pediatrics
Academic PsychiatryAcademic Psychiatry
Academic QuestionsAcademic Questions
Academy of Management DiscoveriesAcademy of Management Discoveries
Academy of Management JournalAcademy of Management Journal
Academy of Management Learning and EducationAcademy of Management Learning and Education
Academy of Management PerspectivesAcademy of Management Perspectives
Academy of Management ProceedingsAcademy of Management Proceedings
Academy of Management ReviewAcademy of Management Review
Liu, Cheng-Kai; Tu, CHING-YEN; Liu, YI-XUAN; Chen, Wei-Hsuan; Cheng, Ko-Ting (2018). General theory of asymmetrical polarization-dependent optics in functional material-doped 90° twisted nematic liquid crystals. Optica Publishing Group. Collection. https://doi.org/10.6084/m9.figshare.c.4066760.v1