Optica Publishing Group

Integrated Reference Cavity with Dual-mode Optical Thermometry for Frequency Correction

Posted on 2021-11-16 - 21:15
Photonic integrated resonators have advantages over traditional benchtop cavities in terms of size, weight, and cost with the potential to enable applications that require spectrally pure light. However, integrated resonators suffer from temperature-dependent frequency variations and are sensitive to external environmental perturbations, which hinders their usage in precision frequency applications. One solution is to use interrogation of the cavity temperature through dual-mode optical thermometry (DMOT) by measuring the shift of the resonance frequency difference between two polarization or optical frequency modes. Yet this approach has only been demonstrated in bulk-optic whispering gallery mode and fiber resonators. In this paper, we implement dual-mode optical thermometry in an ultra-high Q integrated silicon nitride resonator for the first time, to the best of our knowledge. A dual-mode resonance frequency difference temperature sensitivity of 188 ± 15 MHz/K is measured. We demonstrate feedforward DMOT frequency correction that, under an applied external temperature ramp, is able to reduce the optical frequency change to 0.31 kHz/s as compared to an uncorrected 10.03 kHz/s, a factor of 30X reduction. These results show promise for on-chip frequency correction solutions for quantum, metrology, atomic and coherent optical communications applications.


Select your citation style and then place your mouse over the citation text to select it.



Usage metrics



Daniel Blumenthal
Qiancheng Zhao
Mark Harrington
Andrei Isichenko
Ryan Behunin
Scott Papp
Peter Rakich
Chad Hoyt
Chad Fertig


need help?