Optica Publishing Group
Browse

Physics-model-based neural networks for inverse design of binary phase planar diffractive lenses

Version 2 2023-03-08, 21:38
Version 1 2023-03-08, 21:37
Posted on 2023-03-08 - 21:38
Inverse design approach has enabled the customized design of photonic devices with engineered functionalities, through adopting various optimization algorithms. However, conventional optimization algorithms for inverse design encounter difficulties in multi-constrained problems, due to the substantial time consumed in random searching process. Here, we report an efficient inverse design method, based on physics-model-based neural networks (PMNN), for engineering the tightly focusing behavior of binary phase planar diffractive lenses (BPPDLs). We adopt the proposed PMNN to design BPPDLs with designable functionalities, including realizing single focal spot, multiple foci, and optical needle with size approaching the diffraction limit. We show that the time for designing single device is dramatically reduced to only several minutes. This study provides an efficient inverse design method for designing photonic device with customized functionalities, overcoming the challenges in inverse design based on traditional data-driven deep learning.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Optics Letters

AUTHORS (9)

  • Jianmin He
    Zhenghao Guo
    Yongying Zhang
    Yiyang Lu
    Feng Wen
    Haixia Da
    Guofu Zhou
    Dong Yuan
    Huapeng Ye

CATEGORIES

need help?