Practical sensorless aberration estimation for 3D microscopy with deep learning
Posted on 15.09.2020 - 19:01
Estimation of optical aberrations from volumetric intensity images is a key step in sensorless adaptive optics for 3D microscopy. Recent approaches based on deep learning promise accurate results at fast processing speeds. However, collecting ground truth microscopy data for training the network is typically very difficult or even impossible thereby limiting this approach in practice. Here, we demonstrate that neural networks trained only on simulated data yield accurate predictions for real experimental images. We validate our approach on simulated and experimental datasets acquired with two different microscopy modalities, and also compare the results to non-learned methods. Additionally, we study the predictability of individual aberrations with respect to their data requirements and find that the symmetry of the wavefront plays a crucial role. Finally, we make our implementation freely available as open source software in Python.
CITE THIS COLLECTION
Saha, Debayan; Schmidt, Uwe; Zhang, Qinrong; Barbotin, Aurélien; Hu, Qi; Ji, Na; et al. (2020): Practical sensorless aberration estimation for 3D microscopy with deep learning. Optica Publishing Group. Collection. https://doi.org/10.6084/m9.figshare.c.5099429.v2
or
Select your citation style and then place your mouse over the citation text to select it.
Resource Link
SHARE
Usage metrics
Read the peer-reviewed publication

AUTHORS (9)
DS
Debayan Saha
US
Uwe Schmidt
QZ
Qinrong Zhang
AB
Aurélien Barbotin
QH
Qi Hu
NJ
Na Ji
MB
Martin Booth
MW
Martin Weigert
EM
Eugene Myers