Simulations of micro-sphere/shell 2D silica photonic crystals for radiative cooling
Posted on 2021-05-17 - 13:36
Daytime radiative cooling has recently become an attractive passive approach to address the global energy demand associated with modern technologies, currently accounting for about 15 % of the worldwide energy consumption. By engineering surface properties to maximise the natural blackbody emission to radiate thermal energy in the spectral transparency window of the atmosphere (8 – 13 μm), it has been shown that thermal radiation can be transferred to outer space, resulting in surface cooling, without an external electrical input. One technique used is based on surface phonon-polaritons, i.e., thermally excited surface waves in polar dielectric materials which can be outcoupled into free space. Here, we theoretically investigate new surface morphologies in the form of silica micro-sphere and micro-shell photonic crystals (PCs) using rigorous coupled-wave analysis to achieve cooling of over 73 K below-ambient temperature. Additionally, the effect of impurities in silica is explored by simulating soda-lime glass micro-shells, which in turn, exhibit radiative cooling of 61 K below-ambient temperature.
CITE THIS COLLECTION
WHITWORTH, Guy; Jaramillo-Fernandez, Juliana; Pariente, Jose; Fernandez, Pedro David Garcia; Blanco, Alvaro; Lopez, Cefe; et al. (2021). Simulations of micro-sphere/shell 2D silica photonic crystals for radiative cooling. Optica Publishing Group. Collection. https://doi.org/10.6084/m9.figshare.c.5367911.v2
or
Select your citation style and then place your mouse over the citation text to select it.
Resource Link
SHARE
Usage metrics
Read the peer-reviewed publication

AUTHORS (7)
GW
Guy WHITWORTH
JJ
Juliana Jaramillo-Fernandez
JP
Jose Pariente
PF
Pedro David Garcia Fernandez
AB
Alvaro Blanco
CL
Cefe Lopez
CT
Clivia SOTOMAYOR TORRES