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Quantum dot white LEDs with high luminous 
efficiency: supplementary material

This document provides supplementary information to “Quantum dot white LEDs with high luminous 
efficiency,” https://doi.org/10.1364/OPTICA.5.000793. In the first section, we provide the quantum yield 
optimization of red- and green-emitting QDs. The second section shows the structural and elemental 
characterization of synthesized QDs. In the third section, we provide the simulation algorithm and results 
for white light-emitting diodes (LEDs). In the fourth section, the fabrication method of PDMS polymeric 
lens is provided.  The optical properties of the blue LED chip were demonstrated in the fifth section. In the 
sixth section, the properties of GB-based (Green/Blue) QD-LED are presented. In the seventh section, the 
simulation results of luminous efficiency (LE) and NTSC color gamut ratio were shown.  The last section 
shows the optical properties of close-packed and solid-state LEDs.

https://doi.org/10.1364/OPTICA.5.000793
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As mentioned in the main text, elemental analysis was performed on the red- and green-emitting QDs to investigate the presence of cadmium, selenium, zinc and sulfur in QD structures. The results showed that cadmium, selenium, zinc and sulfur elements are present in both red- and green-emitting QDs, respectively (Figure S5).  
C. XRDThe XRD measurement was performed to investigate the structural analysis of the synthesized red- and green-emitting QDs. The diffraction pattern of CdSe, CdS and ZnS structures were shown in Figure S6 (lower panel). As mentioned in the main text, the peaks at 25°, 28°, 42°, and 57° confirmed the CdSe, CdS and ZnS cubic structures in Figure S6 (upper panel). The shift in some diffraction peaks (e.g. at 26°) was due to the lattice mismatch between core and shell [1].   

D. XPS The XPS measurement was used to confirm the core/shell formation in both red- and green-emitting QDs. The change in binding energy of cadmium, zinc, selenium and sulfur indicated formation of new bonding between elements, which was due to the core and shell structure formation (Figure S7). At the same time, XPS measurement also confirmed the presence of cadmium, zinc, selenium and sulfur elements in red- and green-emitting QDs. 
3. Simulation of quantum dot white LEDs The calculation is based on the reference [2]. Shortly, the spectral overlap between the absorbance of the fluorophore and electroluminescence intensity of the pump results in photoluminescence of the fluorophore, where photons are absorbed and spontaneous emission occurs. In this process, incoming photon flux with power spectral density ( పܵ௡(ߣ))ሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ isabsorbed by the fluorophore with absorption coefficient (ߙ௜(ߣ)). Total output power spectral density (ܵ௢௨௧(ߣ))ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ generated by combination of photoluminescence of the fluorophore and transmitted incoming photon flux. The matrix formulation presented in equation (1) takes into account reabsorption and inter-absorption processes where ߢ௜(ߣ) corresponded to absorption ratio of electroluminescent pump by ith 

fluorophore.  ௜ܹ  corresponded to the emission strength, which showed the absorption of each fluorophore by electroluminescent pump scaled by QY meaning that only emission (radiative recombination) is considered. ܯ௜,௜ corresponded to the reabsorption of the ith fluorophore and ܯ௜,௝ corresponded to inter-absorption between ith and jth fluorophore. ௝ܲ,௡ corresponded to normalized spectral emission strength at nth wavelength of the jth fluorophore. ̿ܥ was the spectral multiplication factor to the overall emission due to reabsorption and inter-absorption, which was the simplified form of the sum of infinitely many reabsorption and inter-absorption cycles.  
ܵ௢௨௧(ߣ)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ = పܵ௡(ߣ)ሬሬሬሬሬሬሬሬሬሬሬሬԦ exp ቎− ෍ ௝௝ܦ(ߣ)௝ߙ ቏ + ሬܹሬሬԦ் × ܥ̿ × ധܲ (1) 

(ߣ)௜ߢ = ∑௜ܦ(ߣ)௜ߙ ௝௝ܦ(ߣ)௝ߙ (2) 

௜ܹ = ܳ௜ න ௜ܵ௡(ߣ)ߢ௜(ߣ) ቐ1 − exp ቎− ෍ ௝௝ܦ(ߣ)௝ߙ ቏ቑ  (3) ߣ݀

Fig. S6. XRD measurement of red- and green-emitting QDs.Upper panel showed the XRD pattern of red- and green-emitting QDs, and lower panel showed the diffraction patternsof the CdSe, CdS and ZnS cubic structures.
Fig. S7. The XPS spectrum of (a) red- and (b) green-emittingQDs 
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Table. S1. The simulation results of NTSC color gamut ratio with photoluminescence peak positions of red- and green-emitting QDs. The orange-colored cells showed the highest achievable NTSC gamut ratio (%).   
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The peak wavelength of red-emitting QDs (nm)

 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 

510 -- -- 31 40 51 59 67 75 85 92 97 101 101 101 101 101 101 

515 56 56 56 56 56 62 71 78 88 95 99 104 104 104 104 104 104 

520 56 56 56 56 56 63 72 80 89 96 101 101 101 101 101 101 101 

525 61 61 61 61 61 65 73 81 88 95 101 101 101 101 101 101 101 

530 61 61 61 61 61 65 73 81 87 95 99 99 99 99 99 99 99 

535 63 63 63 63 63 65 73 80 86 92 97 97 97 97 97 97 97 

540 63 63 63 63 63 64 72 78 84 89 94 94 94 94 94 94 94 

545 63 63 63 63 63 64 70 76 81 85 89 89 89 89 89 90 90 

550 61 61 61 61 61 61 67 73 77 81 85 85 85 85 84 85 85 

555 61 61 61 61 61 61 64 69 72 76 80 80 77 78 78 79 79 

560 56 56 56 56 56 56 60 63 67 71 74 74 71 69 70 71 72 

565 56 56 56 56 56 56 56 58 62 65 68 68 65 62 61 60 62 

570 56 56 56 56 56 56 56 56 56 59 62 59 59 56 56 56 56 

575 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 

580 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 
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Table. S2. The simulation results of luminous efficiency by varying the photoluminescence peak wavelengths of red- and green-emitting QDs. The orange-colored cells showed the highest achievable LE (lm/W). 
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The peak wavelength of red-emitting QDs (nm)

580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 

510 104 99 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 

515 105 101 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

520 107 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 

525 109 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106 

530 111 109 109 109 109 109 109 109 109 109 109 109 109 109 109 109 109 

535 113 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 

540 115 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 

545 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 

550 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 

555 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 

560 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 

565 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 

570 114 114 114 114 114 114 114 114 114 114 114 114 114 114 114 114 114 

575 114 114 114 114 114 114 114 114 114 114 114 114 114 114 114 114 114 

580 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 
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