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2. ON-TARGET INTENSITY MEASUREMENT AND
CALCULATIONThe beam profile at the target plane and the corresponding pulse energy are measured in single-shot. A beam size of approximately 360 µm FWHM and a pulse energy of about 40 mJ is obtained on average. Separately, the pulse duration is measured on target through the chirp-scan technique [1, 2], with a value of approximately 4.5 fs. With this characterization we estimate an on target intensity of 1-2×1015 W/cm2. For the simulations, the focusing geometry and laser beam parameters are adjusted to match the measured intensity distribution. The calculation of the laser beam propagation is done through the ABCD-Bessel (or ABCD-Hankel) transform, based on the Fresnel diffraction integral [3]. At the starting plane, we assume an 8th order super-Gaussian spatial intensity distribution with a size of 50 mm FWHM. In accordance with the experimental setup, the beam is clipped by a hard aperture of 45 mm in diameter and then propagates 20 m to the focusing optic. To account for the unknown beam size, divergence and beam imperfections at the focusing optic (due to the use of an adaptive mirror before entering the vacuum beam-delivery line) a focal length of 22.5 m (instead of 17 m) is used in the simulation. This is equivalent to varying the effective f-number in order to match the measured beam size at the focal plane (360 µm). Finally, to match the measured instantaneous intensity the pulse energy was set to 21 mJ, the temporal duration to 4.5 fs (FWHM) and the central wavelength to 800 nm. The pulse energy used in the simulations is lowered in order to account for the reduced energy due to beam reduction by a hard aperture and to imperfect focusing in the experiments. Although, some energy is located outside the focal spot, due to the lower intensity it does not influence the XUV field during HHG. 
3. THEORETICAL MODELThe simulations were carried out using a three-dimensional non-adiabatic simulation code which was first introduced in [4], which has since then been extensively developed [5], including the treatment of high intensity laser propagation when multiply ionized species of the atomic gas are also generated [6]. After calculating the spatio-temporal distribution of the electric field at the entrance of the interaction region, the code simulates HHG in the following three main steps. First, the propagation of the generating laser field (E1) is calculated  based on the wave  equation of the form [7]: 
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 (S1) The above expression can be simplified using paraxial approximation and moving temporal frame (with speed of light c). The actual equation that is solved in Fourier space (applying the Crank–Nicolson method) is 
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where ܨ෠ is the Fourier operator. In the spatial and temporal variation of the refractive index ηୣ୤୤(ݎ, ,ݖ   :௦௧ and action ܵ௦௧ (with respect to momentum) [9]݌ the dispersion of atoms, the optical Kerr-effect and the plasma dispersion is included.  Having the temporal variation of the laser field in all the discretized spatial points of the simulated volume the second step is to calculate the nonlinear polarization of the gas medium. The single-dipole response is obtained using the strong-field approximation, that is by using the Lewenstein integral [8], taking into account the depletion of the initial state due to ionization (described by ionization rate w(t)) and using the saddle-point solution for the momentum (ݐ
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(S3) 
The dipole matrix element d is assumed to be hydrogen-like [4,8].  The last step is to solve the same type of equation as Eq. S1, but for the harmonic field Eh. The source term is the time-dependent macroscopic dipole Pnl of the medium obtained from the single-dipole response xnl, taking into account the ionization probability and the gas density (similarly to how it is done in Ref. [10]): 
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∂−∇ μ    (S4)  The interaction region (both for the cell and jet) was assumed to have a constant pressure distribution (6.7 mbar and 240 mbar for the cells and jet, respectively). The gas targets were placed 10 cm before the geometrical focal plane, matching the experimental situation. From the end of the interaction region the generated radiation was propagated a distance of 12 m (using again the ABCD-Bessel transform [3]), which approximately corresponds to the detection plane in the experiments.  For the calculation of the spatio-temporal intensity of the high-harmonic radiation the theoretical amplitude and phase of the optical elements (filter and dielectric mirror) were taken into account. 
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