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This document includes the supplementary information for the article "Probing, quantifying 
and freezing coherence in a thermal ensemble of atoms," https://doi.org/10.1364/optica.5.001462. 
Here we provide the experimental technique along with theoretical modelling and numerical 
simulation.

1. EXPERIMENTAL TECHNIQUES

A. Magnetic Field Shielding

Ground state coherence, responsible for electromagnetically in-
duced transparency (EIT), is highly sensitive to external mag-
netic field. This is used as an advantage for high precision
magnetometers. However the presence of a stray magnetic field
introduces decoherence in the medium thereby changing the
shape and broadening the EIT resonance. Large stray magnetic
fields can destroy the resonance completely. Therefore we shield
the vapor cell with three layers of µ-metal sheets. The blue curve
in Fig. S.1b shows a typical EIT signal obtained by scanning an
external magnetic field B in the absence of magnetic shielding.
This field is created by sending current through a solenoid with
47 turns placed around the Rb vapor cell. The current is reg-
ulated with a feedback control circuit. B introduces a shift of
µBB in the atomic energy levels, where µB is the Bohr magneton.
This shift is opposite for + and −magnetic sub-levels of ground
state (Fig. S.1a), thereby changing the two photon detuning as
δ = ∆p − ∆c = 2µBB. The line-width of EIT signal is 93 kHz.
The blue curve in Fig. S.1b shows the narrowing of EIT reso-
nance to 30 kHz in the presence of shielding. Another evidence
of decoherence introduced by stray magnetic field can be seen
in the transient response of the cw probe in the presence of a
10 µs control pulse in Fig. S.1c, where δ = 0. When control is
turned off we observe an oscillation of time period 2.45 µs in
the probe transmission which corresponds to a magnetic field of
9.5 µT. This indicates population oscillation between states |1〉
and |2〉. In the presence of magnetic shielding, this oscillation
completely vanishes as seen in Fig. S.1d.

B. Beat note laser locking

Saturation absorption spectroscopy (SAS) is a widely established
technique to stabilize the frequency of a laser with respect to an
atomic transition. However locking several independent lasers
requires independent SAS set-ups, which can be experimentally
cumbersome. Another drawback of this technique is that the
locked frequency can not be changed arbitrarily. Therefore as a
better alternative, we employ a beat note locking technique [1]
to stabilize the frequency difference of two independent lasers,
one of which is frequency locked. Figure S.2a shows the experi-
mental set up for this technique.

In our experiment scheme (Fig. 1c of the main text), con-
trol and probe are derived from an external cavity diode laser
(ECDL1, TOPTICA DL pro) which is locked to |F = 2〉 → |F′ =
2, 3〉 crossover by SAS locking technique and later down-shifted
by 80 MHz with an AOM. This implies that control and probe are
19 MHz red detuned with respect to |F = 2〉 → |F′ = 1〉 transi-
tion. Repumper (ECDL2) and Raman beams (ECDL3) are locked
with respect to ECDL1 via beat note lock. In this technique a part
of two beams from ECDL1 and ECDL2 (or ECDL3) are mixed on
a 50:50 beam splitter, and the beat note signal is recorded on a
fast MSM detector (Hamamatsu G4176-03) with a rise time of 30
ps. The beat signal is amplified and then mixed with a reference
signal from a VCO (Mini-Circuits ZX95-3360+, νVCO ' 3 GHz).
Voltage across VCO is computer controlled using a DAQ card
(NI PXIe-6738). The mixer (Mini-Circuits ZX05-C42+) output
is split into two equal parts with a power splitter, and a fixed
delay is introduced in one part via a longer BNC cable. The
two parts are recombined on a phase detector (Mini-Circuits
ZAD-1-1+), and the output at their sum frequency is blocked
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Fig. S.1. Effect of magnetic field shielding. (a) Energy level diagram of Λ system. (b) Steady state probe transmission in the absence
(orange) and presence (blue) of magnetic shielding. Frames (c) and (d) show the temporal probe transmission in the absence and
presence of magnetic shielding, respectively.

Fig. S.2. Beat note locking. (a) Experimental set up of beat-note lock (b) Beat note fringes.
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by a low pass filter. Fig. S.2b shows the output signal of the
phase detector while scanning free running laser. Here the time
axis corresponds to frequency of the laser. The frequency of free
running laser can then be locked with respect to reference laser
(ECDL1) using a PID circuit. An added advantage of this robust
locking technique is that the frequency of a locked laser can be
changed arbitrarily by controlling the VCO frequency. Using
this technique repumper is locked at |F = 3〉 −→ |F′ = 3〉, while
the Raman coherent beams are kept highly red detuned with
respect to |F = 2〉 −→ |F′ = 1〉 transition where the detuning is
controlled by the VCO voltage.

C. Saturation intensity in a Doppler broadened medium
Rabi frequency Ω is related to saturation intensity Isat and natu-
ral line-width γ3 as

I
Isat

= 2
(

2Ω
γ3

)2

⇒ Isat =
cε0γ2

3 h̄2

4|ε̂.d|2

where ε̂ is the unit polarization vector, d is the atomic dipole
moment, Ω = d.εo/2h̄ is the resonant Rabi frequency and εo is
the electric field amplitude [2, 3]. The scattering cross-section in
a homogeneously broadened medium is [3]

σ(∆) = σ0
γ2

3/4
γ2

3/4 + ∆2
, σ0 =

h̄ωγ3
2Isat

(S.1)

where σ0 is the on-resonance scattering cross-section. For a
Doppler broadened medium scattering cross-section is Gaussian
instead of a Lorentzian,

σ′(∆) = σDe−∆2/Γ2
D (S.2)

where σD, ΓD are the modified on-resonant scattering cross-
section and line width due to Doppler broadening. The cor-
responding change in saturation intensity can be obtained by

integrating equations (S.1) and (S.2), which gives

σ =

∞∫
−∞

σ(∆)d∆ = σ0πγ3, σ′ =

∞∫
−∞

σ′(∆)d∆ = σD
√

π/2ΓD (S.3)

Since σ = σ′, using equation (S.1) we have

σD ≈ 0.89
γ3
ΓD

σ0, σD =
h̄ωγ3
2ID

(S.4)

which finally gives

ID = Isat
ΓD

0.89γ3
(S.5)

where ID is the saturation intensity for thermal atoms. γ3, ΓD
and Isat for 85Rb atoms are 6 MHz, 308 MHz and 1.66 mw/cm2,
respectively [2], which gives ID ≈ 95.75 mW/cm2.

2. THEORETICAL MODELLING

A. Density matrix picture
The scheme of Fig. 4a in the main text can be simulated by
considering a four level atomic system where the fourth level
corresponds to a virtual level which is highly red detuned from
the excited state |3〉. For analytical simplicity the the fourth level
can be adiabatically eliminated assuming an effective Raman
coupling ΩR = Ω+Ω−eiφR /∆R between the two ground states.

The effective Hamiltonian of the three level system, under
dipole and rotating wave approximation, can be expressed as

Ĥ = −(∆p − ∆c)|2〉〈2| − ∆p|3〉〈3| −Ωp(z, t)|3〉〈1| −Ω∗p(z, t)|1〉〈3|
−Ωc(z, t)|3〉〈2| −Ω∗c (z, t)|2〉〈3|+ ΩR(z, t)|2〉〈1|+ Ω∗R(z, t)|1〉〈2|. (S.6)

Here control and Raman field Rabi frequency are defined as
Ωc,±(z, t) ∼ Ωc,±(t) = Ωc,±(0)e−(t−ton)2/2τ2

for t ≤ ton, Ωc,±(0)
for ton < t < to f f and Ωc,±(0)e−(t−to f f )

2/2τ2
for t ≥ to f f , where

τ = 150 ns is the ramp time. The turn-on and turn-off times are
ton = 0 and to f f = 10 µs, respectively. The Rabi frequencies
are defined as Ωc(0) = dc � εc(z)/2h̄, Ωp(z, 0) = dp � εp(z)/2h̄,
Ω±(0) = d± � ε±(z)/2h̄, with dc, dp and d± being the respective
transition dipole moments. εc,p,±(z) are the electric field ampli-
tudes of the corresponding fields. The detunings of these lasers

from the corresponding atomic transitions are ∆c = ω32 − ωc,
∆p = ω31 −ωp and ∆R = ω31 −ω− = ω32 −ω+ where ωp, ωc
and ω± correspond to the respective carrier frequencies.

Time dynamics of the system is governed by master equation
˙ρ(t) = −i[Ĥ, ρ] + L̂(ρ). Here the first term on the right accounts

for coherent interactions while the second term L̂ represents
irreversible incoherent processes in the system. The evolution of
atomic states is therefore given by the following set of equations:

∂ρ11
∂t

= −iΩpρ13 + iΩ∗pρ31 + iΩRρ12 − iΩ∗Rρ21 + γ31ρ33 − Γth(ρ11 − ρ
eq
11), (S.7)

∂ρ22
∂t

= −iΩcρ23 + iΩ∗c ρ32 − iΩRρ12 + iΩ∗Rρ21 + γ32ρ33 − Γth(ρ22 − ρ
eq
22), (S.8)

∂ρ33
∂t

= iΩcρ23 − iΩ∗c ρ32 + iΩpρ13 − iΩ∗pρ31 − γexρ33 − Γth(ρ33 − ρ
eq
33), (S.9)

∂ρ12
∂t

= −Γ12ρ12 + iΩ∗pρ32 − iΩcρ13 + iΩ∗R(ρ11 − ρ22), (S.10)

∂ρ13
∂t

= −Γ13ρ13 − iΩ∗c ρ12 − iΩ∗Rρ23 − iΩ∗p(ρ11 − ρ33), (S.11)

∂ρ23
∂t

= −Γ23ρ23 − iΩ∗pρ21 − iΩRρ13 − iΩ∗c (ρ22 − ρ33), (S.12)
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Fig. S.3. Phase dependence of ρss
12 and ρss

13. (a) |ρss
12| and (b) Im(ρss

13) as a function of φR. Here Ωp = 5.0 × 10−3γ3, Ωc = 1.0γ3,
ΩR = 2.5× 10−2γ3 and γ3 = 6.0(2π) MHz.

where

Γ12 = Γdecoh + Γth + i(∆p − ∆c), (S.13)

Γ13 = Γdecoh +
γex

2
+ Γth + i∆p, (S.14)

Γ23 = Γdecoh +
γex

2
+ Γth + i∆c, (S.15)

γ3 = γ31 + γ32, γex = γ3 + γout. (S.16)

Here γout, Γdecoh and Γth are the radiative decay from excited
state |3〉 out of the closed Λ system, decoherence rate and transit
time decay, respectively. The steady state solutions for ρ12 and
ρ13 are

ρss
12 = [iΩ∗pρss

32 − iΩcρss
13 + iΩ∗R(ρ

ss
11 − ρss

22)]/Γ12, (S.17)

ρss
13 = [−iΩ∗c ρss

12 − iΩ∗Rρss
23 − iΩ∗p(ρ

ss
11 − ρss

33)]/Γ13. (S.18)

For weak probe field Ωp << Ωc, ΩR, analytical solutions for
ρss

ij can be obtained using the perturbation approach as ρij =

ρ
(0)
ij + ρ

(1)
ij . The zeroth order solutions are:

ρ
ss,(0)
11 ' 1, ρ

ss,(0)
22 = ρ

ss,(0)
33 ' 0, (S.19)

ρ
ss,(0)
12 =

iΩ∗R
Γ12 +

|Ωc |2
Γ13(1+|ΩR |2/Γ2

13)

, (S.20)

ρ
ss,(0)
13 =

Ω∗c Ω∗R
Γ12Γ13(1 +

|ΩR |2
Γ2

13
) + |Ωc|2

(S.21)

where we have assumed that Γ13 = Γ23. The above equations
represent the contribution of Raman fields to the three level EIT
system. First order solutions are

ρ
ss,(1)
12 =

−ΩcΩ∗p[Γ13(Γ∗13|Ωc|2 + Γ∗12Γ∗213 + Γ∗12|ΩR|2) + Ω2
R(Γ

2
13 − Γ∗213)]

(Γ∗13|Ωc|2 + Γ∗12Γ∗213 + Γ∗12|ΩR|2)(Γ13|Ωc|2 + Γ12Γ2
13 + Γ12|ΩR|2)

, (S.22)

ρ
ss,(1)
13 =

−iΩ∗p[Γ13|Ωc|2(Γ12Γ∗13 −Ω2
R) + Γ12(Γ∗213 + |ΩR|2)(Γ∗12Γ13 −Ω2

R)]

(Γ∗13|Ωc|2 + Γ∗12Γ∗213 + Γ∗12|ΩR|2)(Γ13|Ωc|2 + Γ12Γ2
13 + Γ12|ΩR|2)

. (S.23)

The above equations comprises of the EIT terms and higher
order corrections of Raman fields. When Γ12, Γ13 are real, the
above equations assume a very simple form:

ρ
ss,(1)
12 =

−ΩcΩ∗pΓ13

Γ13|Ωc|2 + Γ12Γ2
13 + Γ12|ΩR|2

, (S.24)

ρ
ss,(1)
13 =

−iΩ∗p(Γ12Γ13 −Ω2
R)

Γ13|Ωc|2 + Γ12Γ2
13 + Γ12|ΩR|2

(S.25)

which are the usual EIT terms in absence of ΩR.
The time dependent response of the medium is obtained by

numerically integrating the density matrix equations along with
Maxwell wave propagation equation

1
c

∂Ωp

∂t
+

∂Ωp

∂z
= −iµaρ13(z, t). (S.26)

Here µa = Nd2
pωp/h̄ε0 where c and ε0 correspond to

speed of light and dielectric susceptibility in vacuum, respec-
tively. The transmitted probe pulse is Ωp(t + τ) = Ωp(t) +∫ L

0 αIm(ρ13(z, t))dz, where L is the propagation length in the
cell and α is a constant [4].

B. Wave function picture
The evolution of probability amplitudes corresponding to Hamil-
tonian in equation (S.6) can be written as

Ċ1 = iΩ∗pC3 − iΩ∗RC2 − i
Ω2
−

∆2
R

γ3C1, (S.27)

Ċ2 = −(γ2
2
− i(δ +

Ω2
+

∆2
R

γ3))C2 + iΩ∗c C3 − iΩRC1, (S.28)

Ċ3 = −(γ3
2
− i∆p)C3 + iΩpC1 + iΩcC2 (S.29)
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Fig. S.4. Coupled Λ systems within the Zeeman manifold. (a) Atomic energy level scheme for complete Zeeman manifold of 85Rb
D2 |F = 2〉 → |F′ = 1〉 transition. The red and purple arrows represent the control and probe field couplings, respectively. The
numbers on these lines represent the respective transition strengths. (b) Numerically simulated probe transmission for closed 8-
level system.

where γ2 is decay rate of |2〉. For C1 ' 1, the steady state
solutions are

C2Γ̃2 = iΩ∗c C3 − iΩR, (S.30)

C3Γ3 = iΩp + iΩcC2 (S.31)

where Γ̃2 = γ2
2 − i(δ + Ω2

+

∆2
R

γ3) and Γ3 = γ3
2 − i∆p. Substituting

the value of C2 in equation(S.31) we get

C3 =
iΩp

Γ3
+

iΩc

Γ3
(

iΩ∗c
Γ̃2

C3 −
iΩR

Γ̃2
),

which implies

C3 =
Γ̃2

Γ̃2Γ3 + |Ωc|2
[iΩp +

ΩRΩc

Γ̃2
]. (S.32)

Substituting C3 in equation(S.30) we have

C2 =
−Ω∗c Ωp

Γ̃2Γ3 + |Ωc|2
− iΩR

Γ̃2
[1− |Ωc|2

Γ̃2Γ3 + |Ωc|2
], (S.33)

which means

ρss
21 =

−Ω∗c Ωp

Γ̃2Γ3 + |Ωc|2
− iΩR

Γ̃2
[1− |Ωc|2

Γ̃2Γ3 + |Ωc|2
], (S.34)

ρss
31 =

iΩpΓ̃2

Γ̃2Γ3 + |Ωc|2
+

ΩRΩc

Γ̃2Γ3 + |Ωc|2
. (S.35)

For Ωc >> Ωp, Γ3, Γ̃2

ρss
21 = −

Ω∗c Ωp

|Ωc|2
− iΩRΓ3

|Ωc|2

= −
|Ωp|
|Ωc|

eiφ0 − |ΩR|
|Ωc|2

|Γ3|ei(φR+φ3+π/2)

= eiφ0 [A + Bei(φR+φ3+π/2−φ0)], (S.36)

where φ0 = φp − φc is the relative phase between control and
probe fields, φR is the phase between Raman beams, Γ3 =

|Γ3|eiφ3 and A = − |Ωp |
|Ωc | and B = − |ΩR |

|Ωc |2 |Γ3|. The absolute value
of ρss

21 is therefore given as

|ρss
21| =

√
A2 + B2 + 2ABcos(φR − φ0 + φ3 + π/2), (S.37)

and

ρss
31 =

iΩpΓ̃2

|Ωc|2
+

ΩRΩc

|Ωc|2
. (S.38)

Since susceptibility χ ∝ ρ31/Ωp, in the limit of γ2 = 0 we have

ρss
31

Ωp
=

δ′

|Ωc|2
+
|ΩR||Ωc|
|Ωc|2|Ωp|

ei(φR−(φp−φc))

=
δ′

|Ωc|2
+
|ΩR|
|Ωc||Ωp|

ei(φR−φ0), (S.39)

where δ′ = δ+
Ω2

+

∆2 γ3. Figure S.3 shows the dependence of phase
φR on ρss

12 and ρss
13. From equation (S.39) we have

Re(
ρss

31
Ωp

) =
δ′

|Ωc|2
+
|ΩR|
|Ωc||Ωp|

cos(φR − φ0), (S.40)

Im(
ρss

31
Ωp

) =
|ΩR|
|Ωc||Ωp|

sin(φR − φ0), (S.41)

which implies

tan(φe f f ) =

|ΩR |
|Ωc ||Ωp | sin(φR − φ0)

δ′

|Ωc |2 +
|ΩR |
|Ωc ||Ωp | cos(φR − φ0)

. (S.42)

C. Numerical simulations for the complete Zeeman manifold
Though the numerical simulation of a simple three level model
agrees well with our experiments, in reality there are other levels
in the Zeeman manifold which makes the system very compli-
cated. The coherent dynamics in such systems is essentially
dominated by the formation of a dark state. It was first ob-
served by Parkins et.al. [5] that even for a multilevel atom, with
a ground state Zeeman structure, there is always formation of
similar dark states in presence of circularly polarized control and
probe fields. Subsequently, such dark states, formed effectively
between the stretched states for multilevel systems have been
used explicitly for various schemes [6, 7]. Eventually, experi-
ments on such multilevel atoms also started using and effective
three-level model to simulate observations [8, 9]. We follow this
approach, relying on the fact that the simplicity and power of a
three-level model can elucidate most of the essential features of
a coherent dark state dynamics.
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Fig. S.5. Evidence of additivity. (a) Probe transmission for varying repumper rates R. Here Ωc = 2.3× 10−1γ3. (b) Extracted coher-
ence (circles) as a function of repumper rate. Solid line shows the simulated |ρ12|.

However, for the sake of completeness we consider the com-
plete Zeeman manifold of 85Rb D2 |F = 2〉 → |F′ = 1〉 transition
as shown in Fig. S.4a. This system comprises of three mutually
coupled Λ system and its evolution is governed by 36 coupled
equations. We solve the density matrix equations and propa-
gate the field with Maxwell equation (S.26) similar to the case
of three level system. Figure S.4b shows the simulated probe
transmission for closed eight level scheme which is similar to the
response obtained by simulating a three level Λ system, thereby
validating the fact that a simplified three-level scheme captures
most of the essential features for a complicated multi-level sys-
tem.

3. SOME COMMENTS ON EXPERIMENTAL RESULTS

A. Coherence quantification vs measure, in an experimentally
simulated closed system

The presence of neighbouring levels make it impossible to ex-
perimentally realize a closed three level system as shown in
Fig. S.1a. To counter the leakage of atoms outside the Λ man-
ifold, we use an incoherent repumper field which pumps the
scattered atoms back to the system, thereby effectively closing
the system. By tuning the repumper intensity we can change
the system from closed to open. This can be verified in Fig. S.5a,
where it is seen that as the repumper intensity decreases, the
fall height ∆h = h1− h2 decreases making the system more and
more incoherent (open).

We have defined coherence quantifier C in terms of ∆h (sec-
tion III of main text). For a quantity to qualify as a measure
of coherence, it needs to satisfy the following conditions [10]:
(1) the quantifier should be positive, (2) it should not increase
under incoherent operation, (3) it should be monotonic, (4) it
should be an additive quantity. We find that C indeed satisfies
all these conditions. As C is proportional to ∆h , the condition
∆hclosed > ∆hopen > ∆hincoherent implies

Cclosed > Copen > Cincoherent, (S.43)

which also proves that C cannot be negative because the min-
imum bound of C is given by ∆hincoherent = 0. Further equa-
tion (S.43) implies that C decreases under incoherent operation.
Monotonicity of C can be verified from Figure S.5b, where it is
observed that as the repumper intensity increases, i.e., as the
system gets more and more closed (coherent), C also increases.

Numerical results show an excellent agreement with the experi-
ment as shown by solid line in Fig. S.5b. Additivity of C can be
established from the linear region of Fig. S.5b (R/γ3 '0 - 0.07),
where it is clear that C is linearly proportional to number of
atoms in the closed Λ system.

B. Signature of EIT to ATS transition in ρ21

The EIT to ATS transition shown in Fig. 3 of the main text is not
captured in the probe transmission, but is clearly visible in C i.e
|ρ21|. This can be explained in terms of ρss

21 as given by equation
(S.34) (for ΩR = 0)

ρss
21 =

−Ω∗c Ωp

Γ2Γ3 + |Ωc|2
, (S.44)

where Γ2 = γ2/2− iδ and Γ3 = γ3/2− i∆p. For Ωc << Γ2Γ3,
we can see that there is one pole of |ρss

21| at ∆p = 0, while for
larger control strength, there are two poles at ±

√
2Ωc, which

indicates splitting in |ρss
21| at large control strengths and agrees

with the observations in Fig. 3c of the main text.

C. Offset in C with respect to CEIT

For the phase coherent decay compensation scheme as shown
in Fig. 4a of the main text, large detuning ∆R ensures a build
up of two-photon coherence with minimal population reshuf-
fle, simply adding a perturbative correction to the coherence.
However the sinusoidal variation of C with φR is not symmetric
with respect to CEIT as may be seen in Fig. S.6a (also in Fig. 4b
of the main text). This is indicative of limitation of the pertur-
bative analysis, with Raman fields competing with control in
redistributing the populations. Figure S.6b shows the variation
of offset in C with respect to CEIT as a function of |Ω−|2/|∆R|2
where we have considered that Ω− = Ω+.

For a three level EIT scheme the steady state population in the
ground states varies as ρss

22/ρss
11 = |C2|2/|C1|2 ' |Ωp|2/|Ωc|2.

The Raman beams Ω+ and Ω− cause population transfer within
the ground states via optical pumping thereby departing the
system from ideal steady state EIT behavior. The ground state
populations in steady state can be expressed as

|C2|2
|C1|2

'
|Ωp|2

|Ωc|2
+

(∆2
c + γ2

3)

(∆2
R + γ2

3)

|Ω−|2
|Ωc|2

+
(∆2

R + γ2
3)

(∆2
p + γ2

3)

|Ωp|2

|Ω+|2
. (S.45)



Supplementary Material 7

Fig. S.6. Asymmetry in C due to population redistribution by Raman beams. (a) Experimental plots for sinusoidal variation of
C (circles) as a function of φR for varying ∆R. Solid lines are the sine fits. The horizontal dashed line indicate CEIT . Here Ωc =
2.5× 10−1γ3, Ωp = 3.5× 10−3γ3 and |Ω+| = |Ω−| = 3.7× 10−1γ3. (b) Offset in C with respect to CEIT as a function of |Ω−|2/|∆R|2.
Inset indicates the definition of offset for ∆R = 1.5ΓD. (c) Ratio of ground state populations as a function of |Ω−|2/|∆R|2.

Here the last two terms are the correction terms due to opti-
cal pumping by the Raman beams, out of which the second
term plays the dominant role. Therefore the population ratio
ρss

22/ρss
11 ∝ |Ω−|2/|∆R|2 as can be seen in Fig. S.6c. The offset is

decided by the last two terms of equation (S.45), where we have
considered that Ω+ = Ω−. Initially for small |Ω−|2/|∆R|2 =
|Ω+|2/|∆R|2 the last term dominates and the offset is propor-
tional to |∆R|2/|Ω+|2 and when the second term dominates,
offset is proportional to |Ω−|2/|∆R|2, before reaching satura-
tion.
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