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1. METHODS

A. k-EELS Setup and Methodology

k-EELS measurements require a notably different setup of the
TEM compared to momentum-integrated EELS or STEM-EELS
techniques (figure 2(a)). An Hitachi HF-3300 TEM/STEM with a
cold field emission gun (CFEG) and a Gatan Image Filter (GIF)
Tridiem™ and the MAESTRO central computer control system
[1] were used to conduct the k-EELS measurements. The TEM is
aligned and configured to have a parallel electron beam (with
a 0.1 ym diameter probe) at the sample plane with a 300 keV
incident energy. A parallel beam with a large probe diameter
is required in order to map the k-space dispersion of the ex-
citations, which is in direct contrast to the point like probe of
STEM-EELS used for high spatial resolutions. Electrons with nor-
mal incidence pass through the sample and are scattered with a
momentum transfer (Ak) and undergo an energy loss (AE = fiw)
corresponding directly to the momentum and energy of exci-
tations in the sample with resolutions of ~ 0.03 prad/channel
and ~ 0.01 eV/channel, respectively down to ~ 1.2 eV until the
ZLP onset. Inelastically scattered electrons at an angle 6 over a
range of -30 prad to 30 prad in the ky direction were selected by
an EELS slit in the diffraction plane. Additionally, the electron
energy loss over a range of 0-18 eV was resolved via the EEL
spectrometer and the corresponding momentum-energy loss of
the electrons were mapped to the calibrated CCD.

The k-EELS experiment was performed in diffraction mode
with a 3 meter camera length and the sample was illuminated
with a 0.1 yum diameter probe. GIF alignment procedures were
conducted using a series of energy selecting slits ranging from 40

eV to 2 eV and tuned to have non-isochromaticity to 1st and 2nd
order well below tolerance (0.07 eV and 0.32 eV, respectively).
Although the total GIF alignment was performed (including
tuning for image distortions, achromaticity, and magnification),
no energy selecting slit was used during the k-EELS acquisition.
The parallel illumination allows for the entire k-EELS energy-
momentum map image to be recorded for each sample using a
1 second acquisition time integrated over 5 images in the GIF
spectroscopy mode. As the silicon thin films have isotropic
plasmonic properties in k-space the direction of critical points of
the Brillouin zone were not considered however electrons were
traveling perpendicular to the (100) silicon crystal plane.

B. Uncertainty in Measurement

It is evident from figure 2(b) in the main manuscript that there
is an increased uncertainty in the k-EELS measurement at larger
scattering angles. This is a result of the decreased signal to noise
ratio (SNR) of the EELS measurement at large scattering angle
(large k) due to the inherent k-space scaling of of EELS signal
intensity (figure 3).

Furthermore, an increased uncertainty is observed in the sur-
face contributions (the SP) as compared to the bulk contributions
(the BP) in figure 2(b) as the scattering angle increases. This is
due to the fact that the surface scattering intensity decreases
with scattering angle exponentially faster than bulk contribu-
tions (k3 versus k2, respectively) (figure 3). This leads to a
relatively lower SNR for the surface contributions compared to
bulk contributions leading to increased uncertainty for surface
contributions at larger k.

Additionally, an overall increase in the measurement uncer-
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tainty is observed for thinner films as compared to the thicker
silicon films. This is a result of the inelastic mean free path of sili-
con (~ 180 nm for 300 keV electrons) being much larger than the
film thickness leading to a decreased inelastic scattering signal
intensity for the thinner films.

C. DFT Calculations using the GW Approximation

The dielectric constant is calculated using the GW approxima-
tion in the Vienna Ab initio simulation package (VASP [2]),
where G is the single particle Green’s function, and W is the
screened Coulomb interaction between electrons. Quasiparti-
cle energies and wavefunctions corresponding to unoccupied
orbitals (bands) are obtained using this method. The dielectric
constant is then evaluated using the wavefunctions and their
derivatives with respect to momentum. In this approximation,
the self-energy (X) of the many-body electron system is trun-
cated to the first order in G. A partially self-consistent method
(GWj algorithm in VASP) is used, which is shown to closely
match experiments, where G and X are updated until conver-
gence and W is fixed.

Interestingly our calculations using the Bethe-Salpeter Equa-
tion (BSE), which describe electron-hole bound states, calculates
the experimental permittivity of silicon well at lower energies
but begins to deviate at energies into the UV regime and higher
(figure S1). Conversely, the DFT with the GW approximation
shows a much stronger match to the experimental data at high
energies (figure 1 (b) of the main manuscript) which suggests
that the electron-hole pairs are not strongly bound but move
freely at higher energies.
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Fig. S1. Bethe-Salpeter Equation (BSE) calculations of the
dielectric permittivity of silicon. Experimental silicon permit-
tivity data (solid lines) [3] and our BSE calculations predicting
the dielectric permittivity of silicon (x). BSE, which describes
electron-hole bound pairs, agrees well at lower energies where
electron and holes are tightly bound but begins to deviate

at energies into the UV regime and higher. Conversely, the
DFT with the GW approximations (figure 1 (b) of the main
manuscript) agrees strongly with the experimental data in this
region which suggests that electrons are not strongly bound in
this region but can move freely. This increase in the free charge
density is a result of less tightly bound electron-hole pairs and
is what leads to silicon’s metallic character in the EUV.

2. CHERENKOV RADIATION IN SILICON THIN FILMS

Silicon has been observed to support Cherenkov radiation in
the visible region of the spectrum where it behaves like a dielec-
tric. The CR dispersion relation in an isotropic medium such as
silicon takes the form:

keher — \ [ek2 — (w/v,)? and k, = vﬁ (S1)
z

where k"' is the component of the CR wavevector (Kijerenkoo
(kc)) parallel to the sample interface and k; is the component
along the c-axis fixed by the electron velocity (v;). CR radi-
ates out in a cone with a Cherenkov cone angle (6.) between k.
and the axis of the electron trajectory (figure S2 (a)). Realizing
tan(6;) = ky/k;, we define the cherenkov cone angle as:

tan(0;) = 1/ (vz/c)%e — 1 (S2)
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Fig. S2. Thin film Cherenkov radiation at large wavevec-

tors (16-30 prad) in Si. (a) Schematic of CR excitation with
wavevector k yerenkon (kc) in silicon via an electron beam. 6, is
the Cherenkov cone angle (equation S2). (b) Theoretical energy
loss function showing the relative electron loss intensity for a
200 nm silicon film integrated over the large scattering angle
regime (0 = 16 — 30urad). The relative intensity above and
below the Cherenkov velocity threshold is shown (v, = 0.78¢
(blue) and v, = 0.05¢ (red)) and CR is suppressed for the slow
moving electron. Inset shows the corresponding integrated
experimental measurement of CR via k-EELS for a 200 nm film
atv, = 0.78¢c.

For real values of 6, the electron velocity must be v, > ¢/+\/e
which is defined as the CR velocity threshold. CR will only be
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generated if the minimum electron velocity is the phase velocity
in the medium.

The CR scattering probability in thin films decreases with
decreasing thickness as it is captured by the volume energy loss
function which is directly proportional to the sample thickness
(d). This trend follows physical intuition as CR is a manifestation
of the constructive interference of the fields in the bulk of the
structure and thus suitably thick films are required to achieve
coherent emission.

In figure 2 (b), (c), and (d) of the main manuscript, we note
that the CR band is not as dispersive as the EUV surface plas-
mon but still clearly displays dispersive characteristics. This
is evident from equation S1 and equation S2 where k. and 6.
are highly dependent on v, as well as the permittivity eg; (ma-
terial response). Also, as is expected, the uncertainty in the
band-structure measurement is seen to increase with increasing
scattering angle and reduced sample thickness much like the
plasmonic excitations (details in section 1B).

Figure S2 (b),(c) contrast the total energy loss function (both
surface and volume contributions) integrated over large scat-
tering angles (16 — 30urad) above and below the CR velocity
threshold for a 200 nm silicon film. We immediately note that
strong peak which we classify as CR between 2.5-3.5 eV only
exists when we are above the CR velocity threshold (v, > ¢/+/€).
The peak between 3.5-4.2 eV is due to interband transitions in
silicon [4] within this energy range and not a component of the
CR excitation (as noted by the lack of suppression of the peak at
slower velocities).

3. ANISOTROPIC CHERENKOV RADIATION DISPER-
SION IN UNIAXIAL MEDIA

A. Analytic Dispersion Relation

The anistropic Cherenkov radiation dispersion in uniaxial me-
dia can be determined analytically from the uniaxial macro-
scopic electron energy loss function as defined in [5]. Specifically,
anistropic Cherenkov radiation is manifest in the volume loss
contribution of the anistropic energy loss function, which has
(1—€4(v./¢)?)

(ex2)
the source electron, 4 is the sample thickness, €, is the permit-

tivity parallel to the interface and ¢2 = k2 + (e, /¢€x)(w/v:)* —
ez(w/c)?, where ky is the wavevector parallel to the interface
and e; is the permittivity perpendicular to the interface. We see
that in the limit where ¢, = 0, we get a resonantly large enhance-
ment to our anisotropic energy loss function. This enhancement
is a result of the anistropic Cherenkov radiation in uniaxial me-
dia. We can determine the analytic uniaxial Cherenkov radiation
dispersion by solving for the wavevector in the expression for
$? when ¢, = 0:

the form: ELF,q,e & d where v; is the velocity of

2
K = [eh2 — = (%) and K¢ :v% (S3)
where k. is the component of the CR wavevector (k°) parallel to
the sample interface and kj is the CR component along the c-axis
fixed by the electron velocity (v;). We define the anisotropic
Cherenkov cone angle as seen in equation 1 and figure 4(a) of
the main manuscript by realizing that tan(6.) = kS /kS.

B. Effective Medium Theory of a Uniaxial Structure Composed
of an Si/SiO, Multilayer

In the main manuscript, alternating layers of crystalline silicon

(c-Si) (permittivity shown in figure S1) and SiO, with permittiv-

ity €gi0, = 2.5 are used to theoretically realize a uniaxial structure
in the effective medium limit. Cherenkov radiation in such a
structure would follow the dispersion relation defined in equa-
tion S3. We can define the effective permittivities for such a
structure using the generalized Maxwell-Garnett approach for
homogenization of a multilayer system (as seen in the appendix
of [6]). The effective permittivities in the parallel (ey) and per-
pendicular (e,) directions are defined as:

€x = pes; + (1 — p)esio, (S4)

€si€si

€ = (S5)
© 7 pesio, + (1 - p)esio,

where the fill fraction is defined as p = ds;/ (ds; + dgsip,) and dg;

ds;o, are the layer thicknesses of Si and SiO,, respectively. For

the simulations completed in the main manuscript, a fill fraction

of p = 0.35is used.

4. THRESHOLD REDUCTION OF CHERENKOV RADIA-
TION IN HYPERBOLIC MEDIA AND TRADE-OFF WITH
LOSS

The foundation of the thresholdless Cherenkov radiation (TCR)
phenomena is due to the unique hyperbolic topology of the
HMM isofrequency surface that can support infinitely large
wavevectors in the ideal limit. We can map the different values
of the CR wavevector (k.) on the hyperbolic surfaces for different
velocities of the electron source (note: tan(6.) = ky/k;). We
see that in the limit that v; — 0 in equation 1 of the main
manuscript, 0. (and thus k¢) approaches the asymptotes of the
hyperbola for both the type I and type II case (figure S3 (a)). In
the ideal limit, infinitely large wavevectors can be supported at
the asymptotes of the hyperbola and as such the phase velocity
in the medium approaches 0 (vpjpsc = w/k — 0). The minimum
electron velocity where the CR condition is satisfied is at the
point vz = Uy and consequently the minimum CR velocity
threshold is also vy, — 0 in hyperbolic media.

One caveat to the unbounded velocity limit for CR in hyper-
bolic media is that we have an upper limit to the CR radiation
condition in a type | HMM. This is due to the two sheeted nature
of the type I hyperbola creating a bandgap in which photonic
modes with wavevectors smaller than k = kq * /€y are not sup-
ported. As a result, any modes with v > ¢//€x cannot
exist in type I HMMs leading to the upper CR cutoff in such
structures. This upper TCR cutoff in type Il HMMs (v; < ¢/ \/€x)
is observed in figure 5 of the main manuscript where the TCR
is suppressed at large v,. Note that similar suppression does
not occur in the type II region as it is truly thresholdless and
no bandgap exits for the type II single-sheeted hyperboloidal
isofrequency surface.

Figure S3 (b) shows the full field simulations of TCR in the
type I and type II regimes of the Si/SiO; effective medium de-
scribed in figure 4(a) of the main manuscript for electron veloc-
ities as low as v; = 0.001c. In the ideal limit, the velocity has
no lower limit, as indicated by figure S3 (a). However, two key
factors limit the the threshold reduction of TCR in hyperbolic
media: (1) the material loss and (2) the size of the unit cell of the
multilayer structure.

The material loss and nonlocal effects greatly damp the high-k
modes of hyperbolic media at large k and thus the phase velocity
in the medium can never truly reach 0. As a result, we know
that the threshold reduction is fundamentally limited by the
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Fig. S3. (a) The typeI(ex > 0, €; < 0) and type Il (ex < 0, €; > 0) isofrequency surfaces for HMMs that can support thresholdless
cherenkov radiation (TCR) with a wavevector k.. The dashed lines show the asymptotes of the hyperbola and correspond to the
k. for which the Cherenkov velocity threshold is v, = 0. This is where infinitely large wavevectors are supported in a hyperbolic
medium and thus vpp.s, = w/k — 0 and the Chernekov velocity threshold is eliminated. (b) Full field simulations of the type I
and type II thresholdless Cherenkov radiation of the Si/SiO; effective medium described in figure 4(a) of the main manuscript at
velocities as low as v, = 0.001c. In the ideal limit the TCR has no lower velocity threshold as seen in (a). However, material loss in
the structure as well as the finite size of the unit cell of a real multilayer structure fundamentally limit the reduction of the phase
velocity in the medium and thus limit the Cherenkov velocity threshold reduction.

ability to reduce the phase velocity, and the minimum threshold
velocity is vy, = Uppgse-

Additionally, the fundamental lower velocity limit will be
governed by the wavelength limit at which the medium ceases
to act as an effective medium. Figure S3 (b) display the electric
fields for a true effective medium and not a realistic multilayer
structure which would have a finite unit cell size. The finite unit
cell size limits the extent of the high-k modes supported by the
structure to the edges of the brilliouin zone and as a result, limits
the reduction of the phase velocity in the medium.
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