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This document provides supplementary information to “Self-phase modulation cancellation in a high-power 
ultrafast thin-disk laser oscillator,” https://doi.org/10.1364/OPTICA.5.001603. In this supplement, we discuss in 
detail the efficiency of second harmonic generation in cascaded χ(2) processes. We compare the different regimes 
from the limits of continuous wave light to very short pulses. In particular, we present an approximate analytical 
solution, which we used in the Letter, describing the second harmonic generation in an intermediate regime of pulse 
duration. Additionally, we provide all the references for the results presented in Fig. 1 of the Letter, supplementary 
information on the laser cavity, and details about the thermal behavior of the nonlinear crystal.   

In our paper, we deploy a device based on cascaded quadratic 
nonlinearities (CQN) to cancel the self-phase-modulation (SPM) 
picked up in air. One main requirement for the design of this device 
was to quantify the amount of second harmonic (SH) generated and 
the phase shift for the fundamental wave (FW). CQN processes [1] 
are well understood within the framework of the pulsed coupled 
wave equations (CWEs). These equations can be solved 
numerically. Yet, a deeper theoretical understanding and analytical 
formulas are a powerful tool in order to know which levers to 
experimentally pull for optimizing the multi-dimensional 
processes.  

Analytical solutions for the CWEs for CQN are well known in 
literature in the limits of very long and very short pulses [1]. The 
phase shift is usually approximated with Eq. (1) of the letter. We 
found that this equation accurately matches the numerical solution 
in the regime in which we operate the crystal (see Fig. 3 of the letter 
and related discussion). Regarding the amount of SH generated, i.e. 
the inverse saturable losses seen by the laser, the cascading regime 
often refers to a situation where the length of the crystal is long 
enough such that the minima of the second-harmonic-generation 
(SHG) process are completely smoothed out. In this regime, the SHG 
efficiency scales as 1/∆k2. Conversely, for longer pulses or short 
crystals, a sinc2 tuning curve of SHG efficiency versus crystal angle is 
recovered, leading to very small SHG losses in the minima of this 
function. In our case, in order to minimize the SHG losses in the 

laser, we operate the crystal in a regime where these SHG efficiency 
minima are still pronounced. This corresponds to a regime of 
intermediate pulse duration between the limit of very short and 
long pulses. Since we could not find analytical approximations for 
the SHG efficiency in this regime, we developed it, see Eq. (2) of the 
letter. Here we present the derivation of this formula.  

In the first section of this document, we introduce the formalism 
and the efficiency of the SHG process in the well-known case of 
continuous plane waves. In the second section, we switch from 
continuous wave (cw) to pulses and obtain an approximate solution 
for the losses in the SHG minima. Additionally, we discuss the 
different regimes and the range of validity of our analytical 
approximation. In section three we provide all the references used 
in Fig. 1 of the letter. In section four we describe in details the cavity 
design used in the presented laser oscillator and compare it to other 
possible designs. Lastly, in section five, we provide some details on 
the thermal behavior of the nonlinear crystal during laser 
operation. 

1. COUPLED WAVE EQUATIONS
We start with the continuous-wave case and use the CWEs in the
slowly-varying-envelope approximation (SVEA), including first-
order dispersion. We consider the envelopes of the electric field Ei, 
where the subscript i = 1,2, corresponds, respectively, to the FW and 
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the SH. We define the group-velocity-mismatch (GVM) coefficient δ  
= 1/vg,2 – 1/vg,1 where vg,i is the group velocity. Additionally, we 
define the phase mismatch ∆k0 = k(ω2) – 2k(ω1) where ω i is the 
angular frequency. The other parameters entering the CWEs are the 
effective nonlinear coefficient for SHG deff and the index of refraction 
ni. 
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For further analysis, it is convenient to rewrite the CWEs in terms of 
a normalized electric field jE  such that its square magnitude is the 

intensity normalized to the input intensity of the FW, I1,pk.  Thus, we 
define: 
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This translates to an intensity for the electric field: 
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Additionally, we define a coefficient Γpk including the properties of 
the nonlinear medium and the intensity of the FW as: 
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In this way, we can rewrite the CWEs in (S1) and (S2) as: 
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In the approximation of low depletion of the fundamental, we solve 
Eq. (S7) assuming 1( ) 1E z = .  The solution of this equation in a 
phase-matched condition, i.e., ∆k0 = 0 and for a nonlinear medium 
of length L is well known. In particular, the efficiency of the SHG 
process is: 
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2. PULSED SECOND HARMONIC GENERATION 
Next, we calculate the efficiency of the SHG process for pulses 
instead of cw. For this, we switch to the frequency domain, using the 
Fourier transform and find a propagation equation for the SH.  By 
applying the Fourier transform operator 
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= −∫ to the left and right hand side of 

Eq. (S2), it becomes: 
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where  iE is the normalized electric field iE in the frequency domain 
and ν  represents the frequency offset relative to the carrier. 
Without nonlinear effects, i.e. deff = 0, the solution of this equation is 
 ( )2 exp 2E a i vzπ δ= − , where a is a constant. Thus, it is convenient 

to search for a solution to the general equation with deff ≠ 0 in the 
form   ( )2 2 exp 2E A i vzπ δ= − . In our soliton modelocked TDL, the 
pulses have a sech shape in both frequency and time domain [2], 
thus we take a sech function for the electric field of the fundamental 
wave: 1( ) sech( / )E t t τ= . By using this expression for the electric 
field and integrating Eq. (S9) in dz from 0 to L, we again calculate the 
ratio between the energy in the SH at the output of the crystal and 
the initial energy in the FW: 
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where we defined ∆k(ν) = ∆k0 + (2πν)δ. The efficiency in Eq. (S10) 
assumes a spatial plane wave interaction, thus we called it ηpw. In 
the laser, the beam has a TEM00 spatial mode, that is a Gaussian 
profile. This corresponds to an electric field distribution of the form

2( ) ~ exp[ ( / ) ]E r r w−  where w is the beam radius. Hence, we 
need to calculate the average efficiency over this beam profile. The 
total energy in the FW is given by the two-dimensional spatial 
integral of |E(r)|2. The SH is proportional to the square of the 
intensity of the fundamental and so the energy included in it is given 
by the integral of (|E(r)|2)2. By calculating the ratio between these 
two integrals, we get ½. Thus for a beam with a Gaussian profile, the 
efficiency of the SHG process η = ½ ηpw: 
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We now assume that the bandwidth of the pulse is narrow 
enough such that the denominator ∆k(ν)L/2 does not change 
significantly before the sinh(π2ντ) brings the integrand to zero. 
Thus, we approximate ∆k(ν) in the denominator with its value at 
the carrier wavelength, i.e. ∆k0. Additionally, we assume that the 
center wavelength corresponds to a SHG minimum, i.e. 
sin(∆k0L/2) = 0. It should be noted that this assumption will reduce 
our final resulting formula to the case of operation in the SHG 
minima only. Using the definition of ∆k(ν) we have that, in this 
condition sin2(∆k(ν)L/2) = sin2[(2πν)δ L/2]. We can thus 
approximate Eq. (S11) as: 
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This integral can be solved analytically and yields: 
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where /Lδ δ τ= is the ratio between the temporal walk-off 
between the FW and the SH in the crystal δ L and the sech-pulse 
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duration parameter τ . For the sake of clarity we want to stress again 
that Eq. (S12) and (S13) hold only in the SHG minima, that is for ∆k0L 
= 2πnmin. As a function of the parameterδ , the solution of Eq. (S13) 
is shown in Fig. S1 in units of 2/[3(∆k0L)2] in blue. 

First we discuss the two limits for δ , namely 0δ =  and 1.δ >>
In the limit of large δ  that is a large GVM compared to the pulse 
duration, as we see in Fig. S1 the expression in square brackets in 
(S13) is 1, which implies: 
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This is a well-known result in the context of CQN [3, 4]. The opposite 
limit is 0δ = , which corresponds to the case of negligible temporal 
walk off relative to the pulse duration (i.e. narrow bandwidths or 
short crystals). This results in no SHG in the SHG minima. 

In our experiments we operate with a relatively small value of ,δ
in order to minimize the SHG losses. In the time domain this 
corresponds to a situation where the temporal walk off between the 
FW and the SH is a small fraction of the pulse duration. In the 
frequency domain, this corresponds to a pulse whose spectrum is 
narrow enough such that ∆k(λ) is close to 2πnmin across the whole 
pulse spectrum. Thus, we carry out a second-order Taylor 
expansion of Eq. (S13) around 0δ =  obtaining: 
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This solution corresponds to the red curve in Fig. S1 and it differs for 

less than 10% from the value of Eq. (S13) for | | 0.7δ < . In terms of 
full-width-at-half-maximum (FWHM) pulse duration τp = 1.76τ, 
| | 0.7δ <  corresponds to: / 0.4pLδ τ < . For the nonlinear crystal 
used in this laser experiment, the temporal walk off in the L=5-mm 
LBO crystal corresponds to 270 fs. Thus Eq. (S15) is correct within 
10% if τp > 700 fs. This was indeed the case for our laser 
experiments. 
By defining a new constant: 

 
2 2
1

2 3
1 2 0

2 effd
n n c

ω
ξ

ε
=   (S16) 

we rewrite Eq. (S15) in the form presented in the letter in Eq. 2: 
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Fig. S1 Calculated value of Eq. (S13) and second-order Taylor 
expansion. The variable on the x axis /Lδ δ τ=  is the ratio between 
the temporal walk off in the crystal between FW and SH and the sech 
pulse duration parameter τ . In the area within the vertical dashed lines, 
the Taylor expansion differs for less than 10% from the exact solution. 

3. OVERVIEW OF STATE-OF-THE-ART THIN-DISK 
OSCILLATORS 
In Fig. S2, we reproduce Fig. 1 of the letter, including a full list of 
citations for the data points. 

 
Fig. S2 State-of-the-art thin-disk oscillators. Overview of their 
performance in terms of introduced round-trip group delay dispersion 
(GDD) versus output pulse energy. The number in the symbol gives the 
reference [5-15]. 

4. CAVITY DESIGN 
In this section, we provide additional details on the resonator cavity, 
which includes three reflections on the disk gain medium. The 1/e2 
beam radius as a function of the position inside the cavity is shown 
in Fig. S3 as it is obtained by standard ABCD matrix calculations. The 
cold disk radius of curvature (ROC) is Rcold = 2.04 m. During laser 
operation, because of thermal lensing the disk’s curvature changes. 
Here we estimated a Fdisk = 2/Rlasing – 2/Rcold = -0.035/m [16]. We 
have the SESAM at position 0 and the output coupler (OC) at the 
other end of the cavity. In order to have multiple passes on the disk 
we implemented a relay-imaging active multi-pass architecture 
[13]. In this way by properly spacing the two concave mirrors (ROC 
= 2.0 m) and the disk, we obtain the same Gaussian beam radius and 
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curvature for each pass on the disk. This arrangement helps 
minimize the misalignment sensitivity of our cavity design. This is 
defined as the displacement of the laser beam on the disk because 
of an angular misalignment of the disk itself.  This plays an 
important role for thin-disk lasers operated in air since a gas-wedge 
effect due to the air heating up in front of the disk leads to potential 
instabilities [16, 17]. Additionally, this configuration allows us to use 
different spots on the same mirrors in order to increase the number 
of passes on the disk. In this way, a very small angle of incidence 
(AOI) (<3 deg) is possible on the disk and on the curved mirrors. 
This minimizes astigmatism, which is detrimental for modelocked 
operation. 

All the mirrors in our cavity are manufactured by Layertec GmbH 
except for the two high-dispersive (HD) flat mirrors 
providing -2’000 fs2 of GDD each, which are made by University of 
Neuchatel. The curved dispersive mirrors provide -550 fs2 of GDD 
per bounce. The thin film polarizer (TFP), also provided by Layertec 
GmbH, yields ≈ -550 fs2 of GDD per bounce. 

The total SPM picked up in air is calculated as the B integral 
according to the formula: 
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where λ is the wavelength, TOC and ROC, respectively, the 
transmission and the reflectivity of the OC, Ppk,IC the intracavity peak 
power immediately before the OC, l the length of the cavity, w(z) the 
beam radius inside the laser cavity, and n2,air = 4 x 10-19 cm2 /W [18] 
the nonlinear refractive index of air. The factor 2TOC/log(1/ROC) 
takes into account that the peak intensity is not constant in a round 
trip and assumes an exponential growth [19].  

Some TDLs use an alternative approach based on convex mirrors 
to obtain a design having less intracavity foci [16, 17, 20]. While the 
reduced number of foci results in a lower amount of SPM picked up 
in air, such cavities are not compatible with the multi-pass 
architecture we use here. Therefore, they exhibit increased 
misalignment sensitivity. These issues motivated our use of the 
cavity design shown in Fig. S3.  

 
Fig. S3 Evolution of the 1/e2 beam radius. Vertical dashed lines indicate 
the position, respectively, of the SESAM, the disk and the output coupler. 
We report the position of the curved mirrors, the dispersive mirrors, the 
thin-film polarizer (TFP), and the SHG crystal with circles. Blue circles 
refer to curved high-reflectivity mirrors, yellow circles to dispersive 
mirrors providing -550 fs2 GDD, green circles to flat high-dispersive 
(HD) mirrors providing -2’000 fs2 GDD. The numbers in the Figure refer 
to the radius of curvature of concave mirrors. 

5. THERMAL BEHAVIOR OF THE NONLINEAR CRYSTAL 
Using a calibrated thermal camera (FLIR SC640), we measured the 
temperature of the SHG crystal during laser operation. We record a 
temperature increase in the steady state of ≈ 10 °C at the highest 
output power (210 W average output power, with more than 
500 W of intracavity power). This implies a low absorption from the 
crystal since no control over the crystal temperature was in place. 
Therefore, we expect that this SPM-cancellation technique is 
suitable for laser operation toward the kW output-power level [21].  
The time needed by the nonlinear crystal to reach thermal 
equilibrium was in the order of a minute. During this transient 
phase, the laser stayed modelocked.  
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