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This document provides supplementary information to “Kramers–Kronig holographc imaging for high-space-
bandwidth product,” https://doi.org/10.1364/OPTICA.6.000045. We describe detailed explanations about the 
analyticity condition and contour integration; discussions about discrete signals; the change in SBP depending on 
retrieval methods. Then we show experimental setups; simulation results to demonstrate minimum 
interferogram bandwidth; the effect of the zero-padding and strong reference on a complex amplitude image; a 
resolution comparison experiment. We also explain the methods for correcting aberration and phase artifacts. In 
addition, we show the off-axis complex amplitude image for the brain tissue and a MATLAB code for numerical 
simulation of the proposed method.

Derivation of Eq. (5) From the definition of χ, we have χ(r)=log[|1+β(r)|]+iarg[1+β(r)]. Then we get the following expressions for the real part.  
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Note that the last equality of Eq. (S1) is identical to Eq. (5a). The imaginary part of χ is simply arg[1+β(r)] identical to Eq. (5b). 
2D analyticity of χ and contour integration In the main text, Eq. (8) is derived based on the one-dimensional (1D) analyticity condition. In this section, we show that Eq. (8) of the main text guarantees the analyticity of a two-dimensional (2D) function. The 1D analyticity condition in Eq. (8) can be extended to a 2D condition with an additional condition [1], 

 ( )0, 0,χ ν ν ⊥= =   (S2) 

where  ( )χ ν  is the 2D Fourier transform of ( )χ r  and
 ν ν ⊥⊥= +ν ν ν  with 0R⊥ ⋅ =ν ν . Thus for a 2D function χ to be analytic Eq. (8) and Eq. (S2) must be satisfied at the same time. Since χ is a power series of β [see Eq. (6)], Eq. (S2) can be replaced with the following condition for all positive integer n, 

( )[ ] 0, 0,nβ ν ν ⊥= =   (S3)where [ ]h  indicates the 2D Fourier transformation of a function 
h. Here it should be noted that ( )β r  is a band-limited function [Eq. (7)]. Therefore, when Eq. (8) is satisfied,  ( )β ν  is supported only in the positive frequency domain of v satisfying Eq. (S3) for n = 1. Same is true for higher orders; nβ  is a band-limited function whose Fourier spectrum is supported only in the positive frequency of v . Therefore Eq. (8) becomes a sufficient condition of Eq. (S2). Moreover, the validity of the KK relations is guaranteed only by Eq. (8). To retrieve a complex amplitude image the contour integration in Eq. (4) must be conducted. For a 1D function, it is known that the contour integration can be replaced with the 1D Hilbert transform. Since we adopted the 2D analyticity based on the directional Hilbert transform [1], the contour integration can be conducted as 

( ) ( ) ( ) ( )1Im Re sgn ,iχ χ−    = −   × ⋅    r ν ν ν    (S4)
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The following is a MATLAB code for the numerical simulation of the proposed method with two different complex amplitude image. It uses two images provided by MATLAB; autumn.tif and cameraman.tif. Instead one can also use a cosine amplitude pattern for simulation. In the simulation, an ideal plane wave reference is assumed. In addition the spatial frequency of the reference beam lies in negative  νx domain for the simplicity in computing the contour integration. The simulation is conducted at the minimum bandwidth condition of the provided method as shown in Fig. S4(f). After running this code, it will show three result; (1) exact complex amplitudes of a sample beam, (2) complex amplitudes obtained from the proposed method and (3) complex amplitudes obtained from the off-axis method. It also prints g(1) correlations of the retrieved complex amplitudes with the exact values.  % MATLAB code for the numerical simulation of KK holography % written by YoonSeok Baek, 2018-11-06 clear flag = 0; 
%% define a sample field 
%% (1) autumn amplitude & cameraman phase image_size = 160; % number of pixels in one direction; offset = 20; % offset for cropping image amplitude_image = double(imread('autumn.tif')); amplitude_image = amplitude_image(offset+1:offset+image_size, offset+1:offset+image_size); amplitude_imgae = amplitude_image./max(amplitude_image(:));  phase_image = double(imread('cameraman.tif')); phase_image = phase_image(offset+1:offset+image_size,offset+1:offset+image_size); phase_image = -phase_image./max(phase_image(:))*pi+2;  sample_field = amplitude_image.*exp(1i*phase_image);  
%% (2) Cosine pattern % image_size = 60; % number of pixels in one direction; also becomes a number of pixels in detector bandwidth % sample_field_Fourier = zeros(image_size,image_size); % sample_field_Fourier(floor(image_size/2+1)-6,floor(image_size/2+1)-6) = 1; % sample_field_Fourier(floor(image_size/2+1),floor(image_size/2+1)) = 3; % sample_field_Fourier(floor(image_size/2+1)+6,floor(image_size/2+1)+6) = 1; % sample_field = fftshift(ifft2(ifftshift(sample_field_Fourier))); % flag = 1;  
%% define a pupil function % the radius of a pupil function % below is the maximum possible radius for a given detector bandwidth pupil_radius = round(image_size/4)-1;   % create the circular pupil with a raidus of 'pupil_radius' [x_array,y_array] = meshgrid(1:image_size,1:image_size); x_array = x_array - floor(max(x_array(:))/2+1); % center of image to be zero y_array = y_array - floor(max(y_array(:))/2+1); % center of image to be zero pupil_function = (x_array./pupil_radius).̂ 2+(y_array./pupil_radius).̂ 2 <= 1; 

 
%% create a band-limited signal with a circular pupil sample_field_Fourier = fftshift(fft2(ifftshift(sample_field))); sample_field_Fourier = sample_field_Fourier.*pupil_function;  % generated band-limited sample field sample_field = fftshift(ifft2(ifftshift(sample_field_Fourier)));  % normalize maximum amplitude to 1 for simplicity sample_field = sample_field./max(abs(sample_field(:))); sample_field_Fourier = fftshift(fft2(ifftshift(sample_field)));  
%% define a reference field (tilted plane wave) % create an off-axis plane wave reference field ref_field_Fourier = zeros(image_size,image_size);  ref_spatial_freq = -1*(ceil(pupil_radius)+1);  % add one to satisfy the analyticity condition % negative one is multiplied for the simplicity in using matlab function 'hilbert' ref_field_Fourier(floor(image_size/2+1),floor(image_size/2+1)+ref_spatial_freq) = max(abs(sample_field(:)))*length(sample_field(:))*2; % spatial modulation of the reference beam in x-direction % its amplitude is twice the maximum amplitude of the sample beam ref_field = fftshift(ifft2(ifftshift(ref_field_Fourier)));  
%% create an off-axis interferogram net_field = sample_field + ref_field; interferogram = abs(net_field).̂ 2;  % interferogram normalized with reference beam intensity image interferogram = interferogram./abs(ref_field).̂ 2;  % down-sample the interferogram along y-axis to demonstrate minimum bandwidth condition for the proposed method % see Fig.S4(f) interferogram_down_sampled = downsample(interferogram,2); interferogram_down_sampled_Fourier = fftshift(fft2(ifftshift(interferogram_down_sampled)));  % zero padding interferograms in Foureir space % higher value required for strong high-order convolutions  if flag     zero_pad_const = 4; % more zero-padding required for the cosine pattern else     zero_pad_const = 2; end  normalization_const1 = length(interferogram_down_sampled_Fourier(:)); % normalization constant for zero-padding interferogram_down_sampled_Fourier = padarray(interferogram_down_sampled_Fourier,[0,image_size*zero_pad_const],'both'); normalization_const2 = length(interferogram_down_sampled_Fourier(:));% normalization constant for zero-padding interferogram_down_sampled_Fourier = interferogram_down_sampled_Fourier/normalization_const1*normalization_const2; % normalization to mimic high sampling rate 
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interferogram_down_sampled = fftshift(ifft2(ifftshift(interferogram_down_sampled_Fourier)));  
%% Retrieval of KK sample field % take log of interferogram according to Eq.(5) log_interferogram_down_sampled = log(interferogram_down_sampled); [size_y,size_x] = size(log_interferogram_down_sampled);  % apply KK relations to obtain amplitude and phase of S/R kk_real_part = log_interferogram_down_sampled./2; % (1/2)*log(|1+S/R|)^2 = log(abs(E_kk)) kk_imaginary_part = imag(hilbert(real(kk_real_part).')).'; % for this simulation the contour integration is hilbert transform about x kk_sample_field = exp(kk_real_part+1i*kk_imaginary_part)-1; % exp(log(S/R+1))-1 = S/R  % remove the zero padding to match the size with the answer kk_sample_field_Fourier = fftshift(fft2(ifftshift(kk_sample_field))); kk_sample_field_Fourier = circshift(kk_sample_field_Fourier,[0,-image_size*zero_pad_const]); kk_sample_field_Fourier = kk_sample_field_Fourier(:,1:image_size); kk_sample_field = fftshift(ifft2(ifftshift(kk_sample_field_Fourier))); kk_sample_field = kk_sample_field.*downsample(ref_field,2);  % upsample in the vertical direction to match the size with the answer kk_sample_field_Fourier = fftshift(fft2(ifftshift(kk_sample_field))); kk_sample_field_Fourier = padarray(kk_sample_field_Fourier,[(image_size-size_y)/2,0],'both'); % apply pupil function for possible aliasing artifacts kk_sample_field_Fourier = kk_sample_field_Fourier.*pupil_function; kk_sample_field = fftshift(ifft2(ifftshift(kk_sample_field_Fourier))); kk_sample_field = kk_sample_field./max(abs(kk_sample_field(:)));  
%% Retrieval using the conventional off-axis method interferogram = abs(net_field).̂ 2; interferogram_down_sampled2 = downsample(interferogram,2); interferogram_down_sampled_Fourier2 = fftshift(fft2(ifftshift(interferogram_down_sampled2)));  ox_sample_field_Fourier = circshift(interferogram_down_sampled_Fourier2,[0,ref_spatial_freq]).*pupil_function(image_size/4+1:end-image_size/4,:); ox_sample_field_Fourier = padarray(ox_sample_field_Fourier,[image_size/4,0],'both'); ox_sample_field = fftshift(ifft2(ifftshift(ox_sample_field_Fourier))); ox_sample_field = ox_sample_field./max(abs(ox_sample_field(:)));  
%% Display result figure(1), subplot(3,3,1), imagesc(abs(sample_field),[0,max(abs(sample_field(:)))]), axis image, axis off, title('Sample amplitude'), colorbar subplot(3,3,2), imagesc(angle(sample_field),[-pi,pi]), axis image, axis off, title('Sample phase'), colorbar subplot(3,3,3), imagesc(log10(abs(sample_field_Fourier)),[-4,max(log10(abs(sample_field_Fourier(:))))]), axis image, axis off, title('Fourier spectrum (log_1_0)'), colorbar % subplot(3,3,3), imagesc((abs(sample_field_Fourier))), axis image, axis off, title('Fourier spectrum'), colorbar  

subplot(3,3,4), imagesc(abs(kk_sample_field),[0,max(abs(kk_sample_field(:)))]), axis image, colorbar, title('KK amplitude'), axis off subplot(3,3,5), imagesc((angle(kk_sample_field)),[-pi,pi]), axis image, colorbar, title('KK phase'), axis off subplot(3,3,6), imagesc(log10(abs(kk_sample_field_Fourier)),[-4,max(log10(abs(kk_sample_field_Fourier(:))))]), axis image, colorbar, title('Fourier spectrum (log_1_0)'), axis off % subplot(3,3,6), imagesc((abs(kk_sample_field_Fourier))), axis image, colorbar, title('Fourier spectrum'), axis off  subplot(3,3,7), imagesc(abs(ox_sample_field),[0,max(abs(ox_sample_field(:)))]), axis image, colorbar, title('off-axis amplitude'), axis off subplot(3,3,8), imagesc((angle(ox_sample_field)),[-pi,pi]), axis image, colorbar, title('off-axis phase'), axis off subplot(3,3,9), imagesc(log10(abs(ox_sample_field_Fourier)),[-4,max(log10(abs(ox_sample_field_Fourier(:))))]), axis image, colorbar, title('Fourier spectrum (log_1_0)'), axis off % subplot(3,3,9), imagesc((abs(ox_sample_field_Fourier))), axis image, colorbar, title('Fourier spectrum'), axis off  % Calculate g(1) correlation with the solution g1_corr_kk = corrcoef(kk_sample_field(:),sample_field(:)); disp(['KK method, g(1) correlation = ', num2str(abs(g1_corr_kk(1,2)))])  g1_corr_ox = corrcoef(ox_sample_field(:),sample_field(:)); disp(['off-axis method, g(1) correlation = ', num2str(abs(g1_corr_ox(1,2)))]) 
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