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This document provides supplementary information to “Topological edge states in bichromatic 
photonic crystals,” https://doi.org/10.1364/OPTICA.6.000096, including details on the 
computational method, the fitting procedure, and additional spectra of the edge modes for 
different values of β.

1. GUIDED-MODE EXPANSION METHOD

The full-wave electromagnetic simulations have been computed
using a custom implementation of the guided-mode expansion
method discussed in Ref. [1]. Here, we provide a brief summary
of the computational technique.

The method allows for the solution of the second-order equa-
tion for the magnetic field

∇×
[

1
ε(r)
∇×H(r)

]
=

ω2

c2 H(r). (S1)

in a three-dimensional system made up of several layers in the
z direction. The upper and lower layers are assumed to be
homogeneous, whereas the remaining layers include a periodic
patterning of the dielectric function in the xy plane, so that the
global system is periodic in two dimensions. Calculations of
finite-size structures are carried out by assuming a sufficiently
large supercell.

For a fixed two-dimensional crystalline momentum k in the
first Brillouin zone, the magnetic field is expanded over a basis
of orthonormal modes:

Hk(r) = ∑
α,G

cα,GH(g)
α,k+G(r). (S2)

The notation H(g)
α,q indicates the magnetic field of the guided

modes of an effective slab waveguide realized by a stack of ho-
mogeneous dielectric layers. The dielectric constant of each
layer l of the effective system is the average of the dielec-
tric constant of the original system in the same layer, i.e.,
εl = (1/A)

∫
ε l(x, y) dxdy, where the integral runs over the

two-dimensional unit cell of area A. The index α (α = 1, 2, 3, . . . )
refers to the order of the guided mode, whereas q is the two-
dimensional wavevector in the xy plane. Upon separating the

in-plane and out-of-plane variables, the mode field can be writ-
ten in the following form:

H(g)
α,q(r) = ei(qx x+qyy)fα,q(z), (S3)

where fα,q is the mode profile function along the z axis [2]. Since
the effective system is homogeneous in the xy plane, in principle
the wavevector q could take any value. However, as the original
system is periodic, the nonzero values of q are restricted to those
of the form q = k + G, where G is a two-dimensional reciprocal
lattice vector. The mode profile for the guided modes can be
derived using the transfer matrix method [2]. The analytical
expression of the magnetic field for a three-layer system is also
reported in Ref. [1].

Using the expansion in Eq. (S2), the characteristic equation
reduces to the linear eigenproblem

∑
α′ ,G′
H(α,G),(α′ ,G′)cα′ ,G′ =

ω2

c2 cα,G, (S4)

with the matrix element

H(α,G),(α′ ,G′) =
∫ 1

ε(r)
[∇×H(g)

α,k+G(r)]∗ · [∇×H(g)
α′ ,k+G′ (r)]dr.

(S5)
In our implementation, we assume a rectangular unit cell of
size Lx × Ly, and we truncate the basis of the reciprocal lattice
vectors, G = (Gx, Gy), so that −2πNx/Lx < Gx ≤ 2πNx/Lx
and −2πNy/Ly < Gy ≤ 2πNy/Ly (Nx and Ny are positive in-
tegers). As it can seen with the help of Eq. (S3), the integration
over x and y in Eq. (S5) reduces to a Fourier transform, which
can be evaluated with the fast Fourier transform algorithm. The
remaining integration along z is performed by Gaussian quadra-
ture. Analytical expressions for the integral along z can also
be derived [1]. Our truncation scheme differs from the typical
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Fig. S1. Dots: fitting results for the parameters of the HAA model in Eq. (S6). The spectrum of each bichromatic structure with
varying β has been independently fitted. Red lines: linear regression curves of the fitted parameters.

choice |G| < Gmax. The advantage of this truncation is that
it removes the ambiguity in the order of carrying out the in-
version and the Fourier transform of the dielectric function in
Eq. (S5), since the operations of inversion and (discrete) Fourier
transform commute for our choice of the reciprocal basis [3].

In all the calculations in this work, we restrict the order of
the guided modes to the first (lowest-energy) TE mode. As the
system is mirror symmetric with respect to the z = 0 plane, the
first TE and TM modes are decoupled by symmetry. We assume
a periodic supercell of size Ly = 8

√
3a/2 along the y direction.

The size along the x axis is determined by the geometry of each
bichromatic structure, as discussed in the main text. In order to
speed up convergence, we employ a simple subpixel isotropic
averaging scheme for the dielectric function in the xy plane.

2. FITTING PROCEDURE

In order to derive a minimal model to describe the topological
behavior of bichromatic structures, we have performed full wave
simulations of the spectra of bichromatic structures with β =
q/p, where q ≤ 30, using the guided-mode expansion method
introduced beforehand. The spectra have been computed in the
first Brillouin zone for the supercell [−π/(qa) < k ≤ π/(qa)]
and for the range of frequencies inside the original photonic
crystal (PhC) bandgap. Some illustrative spectra are shown by
Fig. 3 in the main text.

Each spectrum for a specific value of β has been indepen-
dently fitted with the solutions of the generalized Harper-Aubry-
André (HAA) model in Eq. (6) of the main text, which we repro-
duce here in a slightly modified form:

ω2

c2 cn =


Vcn + Jncn+1 + Jn−1cn−1, 1 < n < q,
Vcn + Jncn+1 + Jqe−ikqacq, n = 1,
Vcn + J1eikqac1 + Jn−1cn−1, n = q,

(S6)

with Jn = J + J′ cos(2πpn/q) and n = 1, 2, . . . , q. The model
describes a periodic chain of particles with position-dependent
nearest-neighbor interaction. The fitting parameters are V, J,
and J′.

The results of the independent fits are shown in Fig. S1. It was
possible to obtain reliable fitting results for approximately β &
0.75, where there are minibands spanning over the whole PhC
bandgap. For β < 0.75, the frequency extent of the minibands
is limited, affecting the amount of information available for the
fitting. Moreover, the field profile increasingly deviates from

that of the unperturbed waveguide, reducing the validity of the
HAA model in this parameter region. In the range 0.75 . β .
0.96 we observe that the fitting parameters show a clear linear
behavior with β. The dependence of the fitting parameters on
β can be justified on physical grounds, since both the energy
ground level, V, and the hopping terms, Jn, are affected by the
average dielectric function and the hole-hole separation distance
in the waveguide, which, in turn, depend on the modified lattice
constant a′. Further linear regression analysis of the fitted data
led to the linear dependent parameters reported in Eqs. (7) and
(8) of the main text (red lines in Fig. S1), which have been used
in the HAA results of the main text.

3. EDGE STATES

In the main text, we discuss the formation of edge states for a
finite-size bichromatic structure with β = 5/6. In Fig. S2, we
present additional simulations for other values of β. In all cases,
we consider finite-sized bichromatic structures encompassing
Nr = 8 repetitions of the bichormatic supercell embedded in-
side a larger PhC. We calculate the spectrum as a function of
the global spatial displacement of the reduced-size holes, ∆.
The full-wave simulations results [Fig. S2(a,c,e,g)] are compared
with the solutions of the HAA model for the same values of β
[Fig. S2(b,d,f,h)]. The formation of topological edge states cross-
ing the gaps among the minibands of the bichromatic system is
evident in all the examples in Fig. S2. The spectral properties
of the edge states are analogous to the ones discussed in the
main text for the β = 5/6 case. These results confirm that the
existence of the edge states is a general feature of the spectrum
of finite-sized bichromatic structures and it is not restricted to a
specific value of the parameter β.
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(a) β = 7/9

(c) β = 7/8

(e) β = 9/10

(g) β = 11/12

(b) β = 7/9

Fig. S2. (a,c,e,g) Full-wave calculations of the frequency eigenvalues of finite-size bichromatic structures as a function of the spatial
displacement ∆. In all cases, we assume Nr = 8 repetitions of the bichromatic supercell. The value of the parameter β = a′/a varies
among the examples and it is indicated by the labels. (b,d,f,h) Eigenvalues of the finite-size HAA model in Eqs. (6), (7), and (8) of
the main text, for the same values of β.
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