Surface plasmon polaritons on curved surfaces: supplementary material

Ana Libster-Hershoo, ${ }^{1}$ Roy Shiloh, ${ }^{1}$ Ady Arie, $1,{ }^{1,}$
${ }^{1}$ Departmentof Physical Electronics, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
*Corresponding author: ady@post.tau.ac.il

Published 18 January 2019
This document provides supplementary information to "Surface plasmon polaritons on curved surfaces," https://doi.org/10.1364/OPTICA.6.000115, including a book-cover structure microscopic image and a derivation of Eq. (4) of the main text.

In the paper, we showed measurements of a 150 microns bookcover structure. In Figure 1(c) in the main text, we presented a measurement over the central 50 microns out of the 150 microns of the book-cover waveguide. The coupling grating is located ~ 30 microns from the edge of the structure to prevent reflections, as can be seen in the Figure S1.

Fig. S1. Microscopic image of the measured book-cover structure

For the derivation of equation 4, we start with the Helmholtz equation:

$$
\begin{equation*}
\frac{\partial^{2} E}{\partial x^{2}}+\frac{\partial^{2} E}{\partial y^{2}}+\frac{\partial^{2} E}{\partial z^{2}}+k_{0}^{2} n^{2} E=0 \tag{S1}
\end{equation*}
$$

By applying the conformal transformation $\mathrm{z}+\mathrm{iy}=\mathrm{R} 2 * \exp (\mathrm{v}+\mathrm{iu} / \mathrm{R} 2)$, the equation takes the form

$$
\begin{equation*}
\frac{\partial^{2} E}{\partial u^{2}}+\frac{\partial^{2} E}{\partial v^{2}}+\exp \left(\frac{2 v}{R_{2}}\right) \times\left(\frac{\partial^{2} E}{\partial x^{2}}+k_{0}^{2} n^{2} E\right)=0 \tag{S2}
\end{equation*}
$$

Since $R \gg v$, the Taylor expansion $\exp \left(2 v / R_{2}\right) \approx 1+2 v / R_{2}$ can be applied. At leading order, there is an additional term to the

Helmholtz equation $2 v / R_{2} \cdot k_{0}^{2} n_{e f f}^{2}$. Therefore, the reduced Helmholtz equation on the surface (σ, z) is

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial \sigma^{2}}+\frac{\partial^{2} \psi}{\partial v^{2}}+k_{0}^{2} n^{2} \psi+\frac{2 v}{R_{2}} k_{0}^{2} n^{2} \psi=0, \tag{S3}
\end{equation*}
$$

By applying the slowly varying envelope approximation on equation (3) the paraxial wave equation is

$$
\begin{equation*}
i \hbar \frac{\partial A}{\partial v}=-\frac{\hbar^{2}}{2 n_{e f f}} \frac{\partial^{2} A}{\partial \sigma^{2}}-\frac{\hbar^{2} A}{8 n_{e f f} S^{2}(\sigma)}-\frac{n_{e f f}}{R_{2}} v\left(q_{2}\right) A \tag{S4}
\end{equation*}
$$

