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This document provides supplementary information to "Mapping complex mode volumes with cavity
perturbation theory," https://doi.org/10.1364/OPTICA.6.000269. It includes complementary results and

discussions pertaining to the main article.

Section 1 discusses details of the reliability of the AQ-

measurements. Next, is a formal comparison of the classical perturbation formula of Egs. (1) and (2) in
the main article, followed by a study of the accuracy of Eq. (2) for predicting resonance shifts, and finally
an analytical study of the domain of validity of Eq. (2) that leads to upper bounds for the maximum

perturber strength.

1. Experimental details

We use the tip to excite the embedded InAs QD with a cw. laser at
780 nm and, for every tip position, we measure the QD
photoluminescence spectrum. At room temperature, the spectrum
covers more than 100 nm. It exhibits a Lorentzian peak for each
cavity resonance. Due to the interaction with the tip, Re(@) and
Im(@) are both modified. By fitting the spectra for every tip
position, we obtain the A4 and Q maps reported in Fig. 1.

The feedback mechanism of the SNOM is able to maintain the tip
on the sample surface at constant height, whenever the sample is
flat. In photonic crystal cavities, it forces the tip to follow the
topography and then, when the tip is on an air pore, the tip height
is reduced by few tens of nm. The measure of the tip-height map,
see Fig. S1a, allows us to reconstruct, a posteriori, the perturbation
map with a spatial alignment of a few tens of nanometers, which is
needed for a comparison with theoretical prediction. The z-scan is
then performed by moving the sample vertically with steps of 20
nm. During the vertical scan, the tip is maintained at a constant
height. Then, after each z-scan, the sample is repositioned thank to
the feedback mechanism to keep the spatial alignment, and then is
moved in the (x, y) plane.
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Fig.S1 (a) Topography map. (b) Corresponding Q-variation map. The
colored squares represent several tip locations. (c) Q-variation as a

function of the offseted distance z — d,,,;;, between the tip and the
photonic-crystal membrane. The black, green and red curves are
obtained for tip locations shown in (c) with the squares of the same
colors.

In order to detect possible systematic errors in the z-scan (such
as sample/tip drift), we repeated the z-scan several times for
different (x,y) locations. An example is shown in Figs.S1b-c.
Figure S1b reports the Q map at z = 0 for three A points (red
squares), three B points (black squares) and three C points (green
squares), all located at quite different position. Figure S1c reports
the Q-variation for every points. All the data converge to a
common value with similar trends, denoting the reliability of the
presented data.

Finally, we address the repeatability of the SNOM
measurements to detect possible artefacts. Figure S2 shows three
different maps of the Q-factor obtained with the same tip during
three different days. The data comparison conclusively evidences a
quantitative agreement between the three sets of data.
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Fig.S2 Three different maps of the Q-variation induced by the SNOM
tip measured for three different days without changing the tip.
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2. Formal comparison of Eqs. (1) and (2)

The main difference between Egs. (1) and (2) resides in the
replacement of E - E* product by the unconjugated product E - E.
In order to clarify the impact of the replacement for high-Q
microcavities, we consider perturbations formed by deep-
subwavelength isotropic dielectric perturbers (volume 1,
permittivity Ae + €,) that are introduced into a background
material of permittivity &;,. In the static limit, the perturbers act as
point isotropic electric dipoles, with a polarizability proportional to

their perturber volume a = a'V,, o' being a dimensionless

coefficient. For spherical perturbers at optical frequencies, o’ =
22 with -1.5 <o <3 for perturbers with a positive

AS+3Sb
permeability. Replacing « in Eq. (2), and assuming that ' is a real
number, we get

e = 5 [Re() — g m(D)] (S1a)
e = s[Re(B)r2om (B em)

For high-Q photonic cavities, Im(E) « Re(E) and Re(%2) ~
V7” > ilm(%”) (remember that V is the approximate mode
volume defined in Eq. (1)), so that Eq. (S1a) reduces to

Re(AD) ~ —wa'2, (S2a)
which is exactly the shift predicted by Eq.(1). Note that this
conclusion does not hold for low-Q plasmonic resonators. Quite
the contrary, the imaginary part Im (%”) cannot be neglected in
general in Eq. (S1b). Even for our microcavity, Fig. 2a evidences
that the imaginary part dominates over the real part% Re (%”) ,

ie,
im (%) » 2 re () and
IM(A®) ~ — % Re(@) Im (). (S2b)

This mathematically justifies why Eq.(1) fails at predicting
Im(A®).

3. Accuracy of Eq. (2) to predict resonance shifts

The main text focuses on the prediction of perturbation-induced
quality-factor changes, AQ, which is the novelty of the work. For
the sake of completeness, we have performed a similar study for
the resonance shift, whose main result are summarized in Figs. S3
and S4. The conclusion for our cavity geometry is that Eq. (2) is as
accurate to predict wavelength shifts, as it is at predicting Q-
changes. We believe that this result represents a strong evidence of
the great added value brought by Eq. (2) for high-Q cavities.

0 0.1[nm]

-

-

~

numerical

Eq. (2)

Fig. S3 Validation of Eq. (2) for the resonance wavelength shift A1 by
comparison with exact numerical data obtained by solving the
perturbed cavity. All simulations are obtained with the same structure
and perturber as in the Fig. 2 in the main text.

numerical .
L ]
0.15 Eq.(2) R .
ol
L ]
=) ° o
2 0. . . |
.
= e B . 1
4 . . e
o e
0.05 o A o —
.
°® )/'/
°® o0
fass

=1

roonoooc e o 0 0 0 0 0o o o o

100 200 300

ala
0

FIG. S4 Study of the validity range of Eq. (2) for predicting resonance
wavelength shifts A1 by comparison with fully-numerical data
obtained by solving the perturbed cavity. The perturber polarizability
a is normalized by «,, the static polarizability of a silica sphere with
10-nm radius in air. Three perturber positions, 30 nm above the
semiconductor membrane, are considered; they are labelled as “A”, “B”,
“C”, corresponding to the same position in Fig. 1(e) in the main text.

4. Validity domain of Eq. (2)

As evidence by Fig. 2c in the main text, Eq. (2) is exact in the limit of
infinitely small perturbations. In this Section, we would like to
quantify under which condition Eq.(2) may be approximately
valid and used with confidence to predict both resonance shifts
and AQ-changes.

To obtain a qualitative insight into the domain of validity of
Eq. (2), we start from the exact Egs. (3) and (4), insert Eq. (4) into
Eq. (3), annul the driving field (E;, = 0), then perform a Taylor
expansion with respect to « up to the second order, and obtain

AD

- = —(XEN . [I + aH0626G] . EN' (83)

The second term inside the bracket, au,w?8G gathers the
contribution of all other modes that contribute to the mode density
at the cavity, except for the cavity mode that is singled out by E,. In
the limit that this contribution is negligible, Eq. (S3) simply reduces
to Eqg. (2) in the main text. Accordingly, the validity of Eq. (2)
requires that

lauy@?8G|lo < 1, (s4)

where the operation ||+ ||, represents the infinite norm of a
matrix.

Though Eqg. (54) formally quantifies the domain of validity of Eq.
(2), it is difficult to extract more information, since 6G isa 3 X 3
symmetric matrix containing 6 different components. To bypass
this difficulty, we make the approximation 8G =~ 8GI, with
8G = Tr(8G)/3, ie, neglecting the vectorial character of &G,
where I represents the identity matrix, and further assume «o is
real, i.e, neglecting radiation loss and material absorption of the
perturber. Under these approximations, we compare A®
predicted from Eq. (SI-2) and Eq. (2), and derive that the dominant
conditions for Eq. (2) to accurately predict Re(A@) and Im(A®)
are respectively

|a| < @, and |a| K a;, (S5)

where a,. and a; are given by



Re(V71)
Im(V—1)

. 1
a, = min
r { o Re(w280)| !

}
} (s6b)

Note that, to derive Egs. (S5)-(S6), we have used the relations,
5 1 ~_ 5 1 &5 .

Re(V1) » ZIm(V 1) and Im(V~1) » ZRe(V 1) which are

valid for high-Q cavities.

The expressions of @, and ; can be further simplified by first

-1
noting that (1) ::E;_lg » 1 for high-Q cavity and (2) we
generally have |Re(w?8G)| > Im(w?8G)| (as confirmed by
numerical simulations?) for perturbers placed in the near-field of

the cavity. We finally obtain simplified expressions for a,. and «;

1
Uo Im(w280)|

Im(V~1)
Re(V—1)

a; = min{

1 1
Uo Re(w26G)| g m lm(m26G)|

1
ar = uoRe(w256)|'
o 1 | [Im(7~1)
@; = mn {ar' 1o Im(w286)| [Re(7~1) } (S7b)

As a numerical example, we consider the two perturber positions
A and C in Fig. 1a for which noticeable AQ and AA changes are
observed. We numerically find that @, = a; = 665, at position
A, and a, = 702« at position B and a; = 541¢, at position C,
where «, denotes the static polarizability of a silica sphere with
10-nm radius in air like in the main text. For both cases, «,. and «;
have similar values, and this a posteriori explains why Eq. (2) is as
accurate to predict wavelength shifts, as it is at predicting Q-
changes.

' 8G, and then &G, has been computed with COMSOL Multiphysics. A
reasonable estimate for the typical magnitude of §G is that it is essentially
the non-resonant contribution to the full system Green function [scattered
part strictly] on top of which the resonant cavity mode adds. The non-
resonant background is of the same order as the Green function of free
space for a perturber placed outside the cavity.

(S6a)
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