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This document provides supplementary information to “Quantum-limited estimation of the ax-
ial separation of two incoherent point sources,” https://doi.org/10.1364/OPTICA.6.000534. We 
provide derivation of the quantum Fisher information, the construction of optimal 
measurements, SLM calibration and data processing, analysis of astigmatic imaging, detailed 
analysis of the bias of estimators, and Fisher information calculation for an Airy-disk-shaped 
PSF. 

1. DERIVATION OF THE QUANTUM FISHER INFORMATION

Following the procedure in the supplement of Ref. [S1], the quantum Fisher information in our case can be directly calculated as

Ks = 4[〈∂sψ1|∂sψ1〉 −
∣∣ 〈ψ1|∂sψ1〉

∣∣2], (S1)

and it can be readily verified that Ks = 1/4z2
R for the Gaussian PSF. Here we also follow an usual method to calculate the quantum

Fisher information based on the symmetric logarithmic derivative. For two point sources that are located at z = ±s/2 respectively, the
density matrix of a single photon can be expressed as

ρ =
1
2
(|ψ1〉 〈ψ1|+ |ψ2〉 〈ψ2|), (S2)

where 〈r0|ψ1〉 = ψ(r0; s/2) and 〈r0|ψ1〉 = ψ(r0;−s/2). The orthonormal bases in which the density matrix is diagonal are found to be

|e1〉 = A1(|ψ1〉+ e−iφ |ψ2〉),

|e2〉 = A2(|ψ1〉 − e−iφ |ψ2〉),

A1 = (2 +
2√

1 + δ2
)−1/2,

A2 = (2− 2√
1 + δ2

)−1/2,

δ = kNA2s/4,

φ = arctanδ.

(S3)
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Hence the density matrix can be rewritten as

ρ =
1

4A2
1
|e1〉 〈e1|+

1
4A2

2
|e2〉 〈e2| . (S4)

Here we also define the following orthonormal bases

|e3〉 = B1(|m3〉+ e−i3φ |m4〉),

|e4〉 = B2(|m3〉 − e−i3φ |m4〉),

|m3〉 =
i

c0
|∂sψ1〉 − c1 |e1〉 − c2 |e2〉 ,

|m4〉 =
−i
c0
|∂sψ2〉 − c3 |e1〉 − c4 |e2〉 ,

(S5)

where |∂sψ1〉 = ∂ |ψ1〉 /∂s, |∂sψ2〉 = ∂ |ψ2〉 /∂s, and the coefficients are calculated to be

B1 =

(
δ2(
√

δ2 + 1− 1)
2(δ2 + 1)5/2

)−1/2

,

B2 =

(
δ2(
√

δ2 + 1 + 1)
2(δ2 + 1)5/2

)−1/2

,

c0 = kNA2/4,

c1 = A1
−eiφ + (δ− i)2

2(δ− i)2 ,

c2 = A2
eiφ + (δ− i)2

2(δ− i)2 ,

c3 = A1
eiφ(δ + i)2 − 1

2(δ + i)2 ,

c4 = A2
−1− eiφ(δ + i)2

2(δ + i)2 .

(S6)

Here the symmetric logarithmic derivative of density matrix is

L(ρ) = ∑
j,k;Dj+Dk 6=0

2
Dj + Dk

〈
ej

∣∣∣ ∂ρ

∂s
|ek〉

∣∣∣ej

〉
〈ek| (S7)

where Dj =
〈

ej

∣∣∣ ρ
∣∣∣ej

〉
and the matrix elements of L(ρ) can be calculated as

L11 = c0 A2
1

−2δ

(δ2 + 1)3/2 ,

L22 = c0 A2
2

2δ

(δ2 + 1)3/2 ,

L21 = L∗12 =
−2ic0δ

δ2 + 1
,

L31 = L∗13 =
2iA1c0

2B1
(e2iφ − 1),

L41 = L∗14 =
−2iA1c0

2B2
(e2iφ + 1),

L32 = L∗23 =
−2iA1c0

2B2
(e2iφ + 1),

L42 = L∗24 =
2iA2c0

2B2
(e2iφ − 1),

L33 = L34 = L43 = L44 = 0,

(S8)

where Ljk =
〈

ej

∣∣∣L(ρ) |ek〉. After more algebra one can calculate that the quantum Fisher information is

Ks(ρ) = Re TrL(ρ)L(ρ)ρ = c2
0 =

1
4z2

R
. (S9)
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2. SATURATION OF THE QUANTUM CRAMÉR-RAO BOUND

We are interested in the saturating the quantum Cramér-Rao bound in the limit of s = 0. Similar to the proof of Corollary 1 in Ref. [S2],
one can show that a measurement consisting of projectors Πk = ∑α |πkα〉 〈πkα| can saturate the quantum Cramér-Rao bound at s = 0
if and only if for all regular projectors (defined as |

〈
ψ1
∣∣Πk

∣∣ψ1
〉 ∣∣

s=0| > 0) we can have〈
∂0

s ψ1

∣∣∣πkα

〉 ∣∣
s=0 = 0, ∀k, (S10)

where
∣∣∂0

s ψ1
〉 ∣∣

s=0 = (|∂sψ1〉 − 〈ψ1|∂sψ1〉 |ψ1〉)
∣∣
s=0. Such an optimal measurement can be constructed by choosing a proper trial basis

{πkα} and then follow the procedure in Ref. [S2]: (i) Identify regular basis vectors defined as 〈ψ1|πkα〉
∣∣
s=0 6= 0 and null basis vectors

defined as 〈ψ1|πkα〉
∣∣
s=0 = 0. (ii) Calculate

〈
∂0

s ψ1
∣∣πkα

〉 ∣∣
s=0 and check whether it vanishes or not. (iii) Assemble regular basis vectors

satisfying Eq. (S10) as a regular projector Πk = ∑α |πkα〉 〈πkα|. (iv) A null basis vector |πkα〉 is flexible if 〈∂sψ1|πkα〉
∣∣
s=0 = 0. The rank

one flexible projector Πkα formed by a flexible basis vector can be added to any of the previous regular projectors or the following null
projectors. (v) Assemble null basis vectors that are not flexible as a null projector Πk = |πkα〉 〈πkα| defined as

〈
ψ1
∣∣Πk

∣∣ψ1
〉 ∣∣

s=0 = 0.
One can check that any measurement constructed from the previous procedure can satisfy Eq. (S10).

A. Optimal measurement basis set for the Gaussian pupil function

In the main text, we consider the case of the Gaussian pupil function, ψ1(r0) =
√

2/π · exp
(
−r2

0
)
· exp

(
−iksNA2r2

0/4
)

. It is
straightforward to find

ψ1(r0)
∣∣
s=0 = LG0(r0), (S11)

∂sψ1(r0)
∣∣
s=0 = − ikNA2

8
[LG0(r0)− LG1(r0)]. (S12)

We take radial Laguerre-Gaussian modes
〈
r0
∣∣LGp

〉
= LGp(r0) as a trial basis. So we find that for step (i) in the limit s = 0, the only

regular basis vector is |LG0〉 and the remaining other basis vectors are null. (ii) It can be readily shown that〈
∂0

s ψ1

∣∣∣LG0

〉 ∣∣
s=0 = 〈∂sψ1|LG0〉

∣∣
s=0 − 〈∂sψ1|LG0〉

∣∣
s=0 〈LG0|LG0〉 = 0.

(iii) We obtain a regular projector Π′0 = |LG0〉 〈LG0|. (iv) From Eq. (S12), we find
〈
∂sψ1

∣∣LGp
〉
= 0 for p ≥ 2. Thus the basis vectors

with p higher than one are all flexible and therefore can freely added to any regular or null projector. (v) The only non-flexible null
basis vector is |LG1〉, thus we can form a null projector Π′1 = |LG1〉 〈LG1|. We add the projector formed by flexible basis vectors of
even and odd order to the previous regular projectors Π0 and Π1 respectively. Therefore the final optimal measurements can be

Π0 = ∑
p=0

∣∣LG2p
〉 〈

LG2p
∣∣ , Π1 = ∑

p=0

∣∣LG2p+1
〉 〈

LG2p+1
∣∣ . (S13)

Alternatively one can add the flexible projectors to Π′0 or Π′1 to give rise to optimal measurements of

Π0 = |LG0〉 〈LG0| , Π1 = 1−Π0, (S14)

or
Π0 = 1−Π1, Π1 = |LG1〉 〈LG1| . (S15)

Any sorter that can efficiently perform the above measurements can be used to reach the quantum Fisher information when s
approaches 0.

B. Optimal measurement basis set for the pupil function of a hard-edged aperture
The construction of optimal measurement for the Gaussian pupil function can be analogously done for the pupil function of hard-edged

aperture. Consider the pupil function ψ1(r0) =
√

2/π · circ(
√

2r0) exp
(
−iksNA2r2

0/4
)

, where circ(r) = 1 if 0 ≤ r ≤ 1 and circ(r) = 0
if r > 1. The quantum Fisher information is still expressed by Eq. (S1). It is straightforward to find

ψ1(r0)
∣∣
s=0 = Z0(

√
2r0), (S16)

∂sψ1(r0)
∣∣
s=0 = − ikNA2

16
√

3
[Z2(
√

2r0) +
√

3Z0(
√

2r0)], (S17)

where Zn(
√

2r0) =
√

2(n + 1)/πRn(
√

2r0)circ(
√

2r0) and Rn is the Zernike polynomial. We take radial Zernike basis 〈r0|Zn〉 =
Zn(
√

2r0) as the trial basis. Following the previous procedure, we find the following optimal measurements:

Π0 = ∑
even n

|Z2n〉 〈Z2n| , Π1 = ∑
odd n

|Z2n〉 〈Z2n| , (S18)

or
Π0 = |Z0〉 〈Z0| , Π1 = 1−Π0, (S19)

or
Π0 = 1−Π1, Π1 = |Z2〉 〈Z2| . (S20)

Any sorter that can efficiently perform the above measurements can be used to reach the quantum Fisher information when s
approaches 0.
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Fig. S1. Fisher information of (a) axial position z of a single point source and (b) axial separation s between a pair of point sources.
The Fisher information without astigmatism (ast.) is also plotted as a reference.

3. ANALYSIS OF ASTIGMATIC IMAGING

A. Astigmatic imaging for separation estimation
In this section we calculate the Fisher information for astigmatic imaging. We introduce astigmatism to the Gaussian pupil function by
adding the quadratic phase of a vertically oriented cylindrical lens, which can be expressed as

ψ(xp, yp; z) =
√

2/π
1

f1NA
exp

(
−

x2
p + y2

p

( f1NA)2

)
exp

(
−i

kz
2 f 2

1
x2

p

)
exp

[
−i(

kz
2 f 2

1
+

k
2 fC

)y2
p

]
, (S21)

where fC = 1.2 m is the focal length of the astigmatic cylindrical lens and f1 = 4 mm is the objective focal length. The corresponding
intensity in the image plane can be calculated as

I(x, y; z) =
2
π

1
wx(z)wy(z)

exp
(
− 2x2

w2
x(z)

)
exp

(
− 2y2

w2
y(z)

)
, (S22)

where

wx(z) =
λ

πNA

√
1 + (πzNA2/λ)2, wy(z) =

λ

πNA

√
1 + [π(

f 2
1

fC
+ z)NA2/λ]2. (S23)

The Fisher information then can be obtained as

Jast(s) =
∫∫ +∞

−∞

1
I(x, y, s/2)

(
∂I(x, y, s/2)

∂s
)2dxdy. (S24)

The Fisher information with astigmatism is plotted as the dashed line in Fig. S1. As in comparison, in Fig. S1(a) we plot the Fisher
information for single point source axial localization and in Fig. S1(b) the Fisher information for measurement of separation of two
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Fig. S2. (a) The Fisher information of separation estimation for sorter-based measurement with different centroid positions. The
Fisher information for direct imaging with point source pair centroid zC = 0 is plotted as a reference. (b) The Fisher information of
centroid estimation for astigmatic imaging with different separations.
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point sources. For axial localization of a single point source, astigmatism can help increase the Fisher information at z→ 0 as expected.
However, for measuring the axial separation of a pair of point sources, the Fisher information again drops to zero, which contrasts to
the improvement of radial mode sorter discussed in our manuscript.

B. Effect of centroid misalignment and astigmatic imaging for centroid estimation
Assume that the centroid of the point source pair is zC and the separation is s, so the positions of two point sources are z1 = zC + s/2
and z1 = zC − s/2, respectively. Therefore, the output radial mode distribution becomes P′(p; zC, s) ≡

〈
LGp

∣∣ ρ
∣∣LGp

〉
= [P(p; zC +

s/2) + P(p; zC − s/2)]/2. Consequently, the Fisher information of separation in the presence of centroid misalignment can be written
as

J ′(s) =
∞

∑
p=0

1
P′(p; zC, s)

(
∂P′(p; zC, s)

∂s

)2
, (S25)

where the result is shown in Fig.S2(a).
As the next step, we analyze the Fisher information of centroid estimation for astigmatic imaging. The intensity at the image plane

can be rewritten as
I′(x, y; zC, s) =

1
2

I(x, y; zC + s/2) +
1
2

I(x, y; zC − s/2), (S26)

where the definition of I(x, y; z) follows Eq. (S22), and the Fisher information of centroid estimation is thus

J ′ast(zC, s) =
∫∫ +∞

−∞

1
I(x, y; zC, s)

(
∂I(x, y, zC, s)

∂zC
)2dxdy. (S27)

Here we use the value of fC = 0.5 m and the result is shown in Fig.S2(b).

4. SLM CALIBRATION AND DATA PROCESSING

In our experiment we use SLM 1 to generate Gaussian point spread function, and we calibrate SLM 1 to compensate the aberration
and experimental imperfection. The pupil function we want to generate is

ψ(r0; z) =
√

2/π exp
(
−r2

0

)
exp

(
−ikzNA2r2

0/2
)

, (S28)

where z = ±s/2 and this pupil function is generated at the first diffraction order of the computer-generated hologram imprinted on
the SLM. We apply Seidel abberations to the computer-generated hologram to improve mode quality and tune the parameter z to fit
the expected curve. For direct imaging, the measured width w0 of the Gaussian PSF should increase with z as expressed in Eq. (2) in
the manuscript, and the corrected experimental result is shown in Fig. S3(a). For binary sorter-based measurement, the value of Q
calculated from the output photon numbers of the binary sorter defined in Eq. (11) can be written as a function of z as

Q =
1
2

(
1− 1

z2/32z2
R + 1

)
. (S29)

We correct the SLM to fit this curve and the calibrated data is shown in Fig. S3(b). Due to the detector noise and misalignment of
radial mode sorter, the output Q has a small, nonzero value of 0.28% at z = 0, i.e. Q(z = 0) = 0.28%, and we treat this experimentally
measured nonzero value as a constant and subtract it before estimating the axial position. In other words, we use a new quantity
Q̄ = Q− 0.28% in the estimator to calculate s. However, the shot noise associated with this crosstalk cannot be simply removed by
this subtraction. At z = 0, Q is in fact a random variable with an average of 0.28%. For a specific measurement, if the measured Q is
lower than 0.28%, then Q̄ becomes negative and the above equation results in an imaginary z. In our experiment, once a negative Q̄ is
obtained we force it to be zero to guarantee a real z. Given that Q̄ is either zero or positive at z = 0, the expectation of Q̄ becomes
positive rather than 0, and consequently the expectation of ẑ becomes positive. At z = 0 the two point sources coincide and thus this is
why we measured a positive s when the s is zero. This treatment is also used in the estimator of direct imaging as will be analyzed in
detail in the next section.

To quantify our treatment, we model the crosstalk of 0.28% as binomial distribution. Specifically, we assume a probability of
p = 0.28% for a photon to be detected in the output port for odd-order radial modes. For N photons, the number of photons that
appear in the output port for odd-order radial modes follows the binomial distribution as

B(k; N, p) =
N!

k!(N − k)!
pk(1− p)N−k. (S30)

Here the estimator is defined as

Q̂ = k/N, ŝ = 2zR

√
2

1− 2Q̂
− 2. (S31)

The expectation of Q̂ is E[Q̂] = p = 0.28%. As we mentioned above, we subtract this number and use ˆ̄Q = Q̂− 0.28% as the new
estimator to mitigate the effect of crosstalk. However, it is possible to obtain a negative Q̄, and we force it to be zero whenever a
negative value is obtained. Then the expectation of ŝ can be calculated as

E[ŝ] =
N

∑
k>Np

2zRB(k; H, p)

√
2

1− 2 k−Np
N

− 2. (S32)
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(a) (b)

Fig. S3. (a) Measured Gaussian width w0 as a function of z. (b) Measured Q of binary sorter as a function of z.

For N = 2000 and p = 0.28% the above equation can be numerically calculated to be E[ŝ] = 0.043zR, which is very close to the
experimentally measured value of 0.049zR.

5. BIAS ANALYSIS OF THE ESTIMATOR

A. Direct imaging method
The intensity distribution on the image plane for the direct imaging method can be written as [see Eq. (2) in the manuscript]

I(r; z) =
2
π

1
w2(z)

exp
(
− 2r2

w2(z)

)
,

w(z) =
Mλ

πNA

√
1 + (zπNA2/λ)2,

(S33)

which can be interpreted as the probability density function (PDF) on the image plane for single photons. The magnification M
is assumed to be 1 to simplify the calculation, and as we show in the manuscript this magnification does not influence the Fisher
information. Since the point sources are located at z = ±s/2, in the following we rewrite w(z) as w(s) = w(z = s/2). The maximum
likelihood estimator of direct imaging for N measurements is

ŝdirect = 2zR

√√√√ 2
Nw2

0

N

∑
m=1

r2
m − 1, (S34)

and our goal here is to analyze the bias of this estimator at the limit of s→ 0. The CRLB of an estimator is [S3]

Var(ŝ) ≥ (∂E[ŝ]/∂s)2

N · I(s) , (S35)

where Var(ŝ)is the variance of the estimator, E[ŝ] is the expectation of estimator, and I(s) = 4s2/(s2 + 4z2
R)

2 is the Fisher information.
For an unbiased estimator, i.e. E[ŝ] = s and thus ∂E[ŝ]/∂s = 1, the CRLB is simply given by the inverse of Fisher information. In the
manuscript we show that the Fisher information of direct imaging vanishes when s→ 0, but the variance of direct imaging in both
experiment and simulation does not diverge to infinity. This is because of the bias of the estimator as we analyze in the following. In
the polar coordinate, the PDF becomes

f (r) =
4

w2(s)
exp

(
− 2r2

w2(s)

)
, r ≥ 0. (S36)

Since the estimator is defined in terms of r2, here we define r̄ = r2 and the PDF of r̄ can be calculated as

f̄ (r̄) = f (r(r̄))
dr
dr̄

=
2

w2(s)
exp

(
− 2r̄

w2(s)

)
, r ≥ 0, (S37)

where r(r̄) =
√

r̄. For N independent measurements (r1, r2, · · · , rm), the PDF of the sum of random variables is the convolution of each
PDF. Therefore, the PDF of x = ∑N

m=1 r2
m can be expressed as f̄ (r̄)⊗ f̄ (r̄)⊗ · · · ⊗ f̄ (r̄), where ⊗ denotes the operation of convolution.

This PDF turns to be the Erlang distribution, which is a special case of the gamma distribution, and can be given as

g(x; N, k′) =
1

(N − 1)!
k′N xN−1 exp

(
−k′x

)
, x ≥ 0, (S38)
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where k′ = 2/w2(s). Therefore, the PDF of x̄ = 2x/Nw2
0 − 1, which is the term under the square root of Eq. (S34), can be readily

obtained as
P(x̄) = g(x̄ + 1; N, k), x̄ ≥ −1, (S39)

where k = Nw2
0k′/2 = N/[1 + (sπNA2/2λ)2]. It can be noticed that the estimator, which can be written as ŝdirect = 2zR

√
x̄, become

ill-posed when x̄ < 0. The intuition behind this behavior is that the estimator calculates the separation s based on the measured w(s).
By definition we know that w(s) ≥ w0, but in an experiment it is possible to get a value of w(s) that is even less than w0, especially
when the available photon number is small. One way to proceed is to force x̄ = 0 whenever a negative x̄ = 0 is measured, and this is
how we perform our experiment as well as the Monte Carlo simulation. Hence, the integration region −1 ≤ x̄ ≤ 0 can be ignored
because

√
x̄ is forced to be 0, and consequently the expectation becomes

E[ŝdirect] = E[2zR
√

x̄] = 2zR

∫ ∞

0

√
x̄g(x̄ + 1; N, k)dx̄

= 2zR

∫ ∞

1

√
x̄− 1g(x̄; N, k)dx̄.

(S40)

When s is small, we can use the Taylor expansion of k as k ≈ N(1− c0s2) with c0 = π2NA4/4λ2 = 1/4z2
R. In addition, when N is

relatively large, such as 2000 used in our experiment, we can use the Stirling approximation N! ≈
√

2πNN+1/2e−N and thus g(x̄; N, k)
can be approximated as

g(x̄; N, k) ≈ g(x̄; N, N(1− c0s2)) ≈
√

N
2π

(1− c0s2)N xN−1e(1−x)NeNxc0s2
. (S41)

Using eNxc0s2 ≈ 1 + Nxc0s2 and (1− c0s2)N ≈ 1− Nc0s2, we have eNxc0s2
(1− c0s2)N ≈ 1 + N(x− 1)c0s2 and thus

g(x̄; N, k) ≈
√

N
2π

xN−1e(1−x)N [1 + N(x− 1)c0s2],

∂g(x̄; N, k)
∂s

≈
√

2N
π

xN−1e(1−x)N N(x− 1)c0s,

(S42)

therefore

E[ŝdirect]
∣∣
s=0 =

√
2N
π

zR

∫ ∞

1

√
x̄− 1x̄N−1e−(x−1)N . (S43)

For CRLB, we have
∂E[ŝdirect]

∂s

∣∣∣∣
s=0

= 2zR

∫ ∞

1

√
x̄− 1

∂g(x̄; N, k)
∂s

dx̄

=

√
N
2π

Ns
zR

∫ ∞

1
(x̄− 1)3/2 x̄N−1e−(x̄−1)Ndx̄.

(S44)

In the manuscript we evaluate scaled standard deviation as Var(ŝ)1/2/(zR/
√

N), which can be expressed as

Var(ŝ)1/2

zR/
√

N

∣∣∣∣
s=0
≥ ∂E[ŝdirect]/∂s

zR I(s)
=

2zR
s

∂E[ŝdirect]

∂s

=

√
2N
π

N
∫ ∞

1
(x̄− 1)3/2 x̄N−1e−(x̄−1)Ndx̄.

(S45)

The integral of above equations can be analytically calculated by the following approximations. Eq. (S44) can be rewritten as

∂E[ŝdirect]

∂s

∣∣∣∣
s=0

=
s√

2πzR
N3/2

∫ ∞

1
(x̄− 1)3/2 x̄N−1e−(x̄−1)Ndx̄. (S46)

Then we set x̄ = 1 + t/
√

N and therefore the integral becomes

∂E[ŝdirect]

∂s

∣∣∣∣
s=0

=
s√

2πzR
N1/4

∫ ∞

0
t3/2(1 +

t√
N
)N−1e−

√
Ntdt. (S47)

Now we can use the following approximation

(1 +
t√
N
)N−1 = exp

(
(N − 1) ln

(
1 +

t√
N

))
= exp

(
(N − 1)(

t√
N
− t2

2N
+ · · · )

)
≈ exp

(√
Nt− t2

2
− t√

N
+

t2

2N

)
= exp

(√
Nt
)

exp
(
− t2

2

)
exp

(
− t√

N
+

t2

2N

)
≈ exp

(√
Nt
)

exp
(
− t2

2

)
(1− t√

N
+

t2

2N
),

(S48)
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therefore
∂E[ŝdirect]

∂s

∣∣∣∣
s=0
≈ s√

2πzR
∝ N1/4

∫ ∞

0
t3/2e−t2/2(1− t√

N
+

t2

2N
)dt

=
s√

2πzR
N1/421/4

∫ ∞

0
e−t1 (t1/4

1 −
√

2
N

t3/4
1 +

1
N

t5/4
1 )dt

≈ s√
2πzR

N1/421/4Γ
(

5
4

)
≈ 0.43N1/4s

zR
,

(S49)

where t1 = t2/2 and Γ(z) =
∫ ∞

0 xz−1 exp(−x)dx is the Gamma function. Immediately we can get

Var(ŝ)1/2

zR/
√

N

∣∣∣∣
s=0
≥ ∂E[ŝdirect]/∂s

zR I(s)
=

2zR
s

∂E[ŝdirect]

∂s
≈ 0.86N1/4. (S50)

The right-hand side of the above inequality is calculated to be 5.8 for N = 2000, which is close to the Monte Carlo simulation result 6.6
as shown in Fig. 4(b) in the manuscript. We note that the above equation is an inequality instead of an equation, thus our analytic
result is reasonable since 5.8 < 6.6. Another apparent observation is that the CRLB of direct imaging scales with N as

Var(ŝ) ≥ (∂E[ŝ]/∂s)2

N · I(s) ∝
(N1/4)2

N
=

1√
N

(S51)

which means that this estimator cannot reach the standard quantum limit [S4]. Similar math tricks can be applied to the evaluation of
E[ŝdirect]

∣∣
s=0 and the result is

E[ŝdirect]
∣∣
s=0 = (

2
N
)1/4 zR√

π
Γ
(

3
4

)
≈ 0.82N−1/4zR, (S52)

which is E[ŝdirect]
∣∣
s=0 = 0.1226zR for N = 2000. Thus this approximated result is very accurate. It can be noticed that this bias term is

proportional to N−1/4, which scales rather slowly with N and a sufficiently large N ≈ 105 is needed to reduce the bias to 0.05zR.

B. Sorter-based measurement
For the binary mode sorter used in our experiment, the probability distribution is a binomial distribution which can be described as
[see Eq. (8) in the manuscript]

P0(s) =
1
2
+

4z2
R

8z2
R + s2

, P1(s) =
1
2
−

4z2
R

8z2
R + s2

. (S53)

The sum of N independent binomial distribution becomes another binomial distribution and the probability distribution is

P(k; N, p) =
(

N
k

)
pk(1− p)N−k, (S54)

where p = P0(s). The estimator used for sorter-based measurement can be written as

Q̂ =
N − k

N
, ŝbinary = 2zR

√
2

1− 2Q̂
− 2. (S55)

In the limit of s→ 0, we have p ≈ 1− s2/16z2
R. Therefore

E[ŝbinary] =
N

∑
k=0

2zRP(k; N, p)

√
2

2k
N − 1

− 2

≈
N

∑
k=0

2zR
N!

k!(N − k)!
(1− s2

16z2
R
)k(

s2

16z2
R
)N−k

√
2

2k
N − 1

− 2

=
N

∑
k=0

2zR
N!

k!(N − k)!
(1− s2

16z2
R
)N−k(

s2

16z2
R
)k
√

2
2(N−k)

N − 1
− 2.

(S56)

In the last step we make the substitution k→ N − k. When s is small, we can discard all higher-order terms and only keep the term
with a small k. We keep the terms with k = 0, 1, 2 and the above equation becomes

E[ŝbinary] ≈ 0 + 4zR
√

N(1− s2

16z2
R
)N−1(

s2

16z2
R
) + 2zR

√
2N(N − 1)(1− s2

16z2
R
)N−2(

s2

16z2
R
)2 + · · ·

≈
√

Ns2

4zR
+ 2
√

2NzR(N − 1)(
s2

16z2
R
)2 + · · ·

(S57)
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Fig. S4. Fisher information of different measurements for an Airy-disk-shaped PSF.

If we assume that Ns2/16z2
R � 1, then all higher-order terms can be neglected and the result can be simplified to

E[ŝbinary] =

√
Ns2

4zR
. (S58)

At the first sight this result seems problematic as the expectation value increases with N. This is because we make a strong assumption
Ns2/16z2

R � 1. Therefore when N is sufficiently large, the expectation value will not increase because other terms need to be taken into
account. In addition, the point we want to make with this result is that E[ŝbinary]|s=0 = 0 as well as ∂E[ŝbinary]/∂s|s=0 = 0. However,
unlike the direct imaging, the Fisher information of sorter-based measurement is Isorter(s) = 4/(s2 + 16z2

R) and is nonzero at s = 0 as
Isorter(0) = 1/4z2

R. Therefore we have

Var(ŝsorter)
∣∣
s=0 ≥

(∂E[ŝsorter]/∂s)2

N · Isorter(s)

∣∣∣∣
s=0

= 0. (S59)

Both the expectation and variance agrees with the Monte Carlo simulation.

6. FISHER INFORMATION CALCULATION FOR AN AIRY-DISK-SHAPED PSF

In our manuscript we mainly discuss the Gaussian PSF model which is valid only in the paraxial regime. In this section, we calculate
the Fisher information for an Airy-disk-shaped PSF. The main conclusion of this section is that: (1) For an Airy-disk-shaped PSF, the
Zernike mode sorter provides the optimal estimation for the axial separation of two point sources. (2) Although the Laguerre-Gaussian
mode sorter is sub-optimal, it can still provide persistent nonzero Fisher information and thus outperform the direct imaging in the
near-zero separation regime.

In the pupil plane, the normalized pupil function for an Airy-disk-shaped PSF can be written as

ψH(rp; z) =
1√

π( f1NA)2 circ(
rp

f1NA
) exp

(
−ikzr2

p/2 f 2
1

)
, (S60)

where rp is the radial coordinate in the pupil plane, f1 is the objective focal length, and circ(x) = 1 for x < 1 and circ(x) = 0 for x ≥ 1.
The density matrix for two point sources can be expressed as ρH = (

∣∣ψ1
H
〉 〈

ψ1
H
∣∣+ ∣∣ψ2

H
〉 〈

ψ2
H
∣∣)/2, where

〈
rp
∣∣ψ1

H
〉
= ψH(rp; s/2) and〈

rp
∣∣ψ2

H
〉
= ψH(rp;−s/2). The quantum Fisher information (QFI) can be directly calculated as [S1]

KH = 4(〈(∂sΨ)2〉 − 〈∂sΨ〉2) = π2NA4

12λ2 , (S61)

where Ψ(rp; s) = −ksr2
p/4 f 2

1 is the phase gradient of ψH(rp; s/2) and the angular bracket denotes 〈Φ〉 =
∫ ∞

0 Φ(rp)|ψH(rp; z)|22πrpdrp.
It is clear that the QFI is a constant as shown in Fig. S4.

The Fisher information calculation for Zernike sorter is similar to that of the radial mode sorter. Here we use the well-known Zernike
polynomials as

〈
rp
∣∣Zm

n
〉
= Zm

n (rp/ f1NA). The Zernike mode is normalized in such as way that
∫ f1NA

0 |
〈
rp
∣∣Zm

n
〉
|22πrpdrp = 1. Since

the azimuthal part of the Zernike basis is ignored, we have m = 0 and n has to be an even number following the definition of Zernike
polynomials. The Fisher information can thus be computed as

JZernike(s) =
pmax

∑
p=0

∣∣∣∂s

〈
Z0

2p

∣∣∣ ρH

∣∣∣Z0
2p

〉∣∣∣2/〈Z0
2p

∣∣∣ ρH

∣∣∣Z0
2p

〉
, (S62)

where pmax + 1 is the number of Zernike modes used for superresolution. In our simulation we choose pmax = 1, which means that
we only use two modes of lowest orders, which should be reasonably achievable in an experiment. We plot JZernike(s) in Fig. S4 as
orange circles. It can be seen that the Zernike mode sorter can reach the QFI at a near-zero separation s.
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As a comparison, we also calculate the Fisher information for direct imaging measurement. The intensity distribution in the image
plane related to the pupil function by a Fourier transform as

I(r, s) =
1
2
|F [ψH(rp, s/2)](r, s/2)|2 + 1

2
|F [ψH(rp,−s/2)](r,−s/2)|2, (S63)

where F [·] denotes the Fourier transform with coordinate transformation from rp (in the pupil plane) to r (in the image plane). Unlike
the case of the Gaussian PSF, the Fourier transform of the hard-edged pupil function does not have an analytic form, so the above
equation has to be computed numerically. Then the Fisher information for direct imaging measurement can be written as

JDirect(s) =
∫ ∞

0

1
I(r, s)

(
∂I(r, s)

∂s

)2
2πrdr, (S64)

and the result is plotted as the yellow dashed line in Fig. S4. It is clear that the Fisher information drops to zero for a near-zero
separation s.

As the next step, we calculate the Fisher information for the use of Laguerre-Gaussian (LG) mode sorter for an Airy-disk-shaped
PSF instead of a Gaussian PSF. Here we use the LG basis in the pupil plane as

〈
rp
∣∣LGp

〉
=

√
2
π

1
wp

exp

(
−

r2
p

w2
p

)
Lp

(
2r2

p

w2
p

)
, (S65)

where wp is the beam waist radius. Here we use the value of wp = f1NA/1.121 which is obtained by numerically maximizing the
inner product

〈
LG0

∣∣Z0
0
〉
. The intuition behind is to make |LG0〉 be as close as possible to

∣∣Z0
0
〉
. Then the Fisher information can be

calculated as

JLG(s) =
pmax

∑
p=0

∣∣∂s
〈
LGp

∣∣ ρH
∣∣LGp

〉∣∣2/〈LGp
∣∣ ρH

∣∣LGp
〉

. (S66)

The result is shown as the blue dotted line in Fig. S4. It can be seen that although LG mode sorter has a lower Fisher information
than the optimal Zernike mode sorter, its value at near-zero separation persists and does not drop to zero, outperforming the direct
imaging.
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