
Reliable deep-learning-based phase imaging with
uncertainty quantification: supplementary material
YUJIA XUE, SHIYI CHENG, YUNZHE LI, AND LEI TIAN*

Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
*leitian@bu.edu

Published 7 May 2019

This document provides supplementary information to “Reliable deep learning-based phase 
imaging with uncertainty quantification,” https://doi.org/10.1364/optica.6.000618. We 
provide more details including: the Bayesian Neural Network (BNN) implementation, a 
comparison between two implementations of uncertainty quantification including the Dropout 
network and Deep Ensembles, data acquisition, data preprocessing, examples of phase unwrapping, 
comparison of the phase reconstructed from the model-based multiplexed Fourier ptychographic 
microscopy algorithm and the proposed BNN, how training FOV affects predicted uncertainty, cross 
validation on unseen cell types and unseen experimental setups, and comparisons of phase predicted 
from the proposed BNN and convolutional neural network (CNN).

1. BNN IMPLEMENTATION

Our BNN follows the U-Net architecture and is modified to
perform uncertainty learning. The input takes five 384× 384
pixel images. The output predicts both the mean and standard
deviation pixel-by-pixel in two channels, both with size 384×
384 pixels. The downsampling is done by 2× 2 maxpooling.
The upsampling is done by 2 × 2 upsampling followed by a
convolutional layer. The denseblock [1] is used to facilitate
efficient training. All denseblocks have three inner layers and a
growth rate 16. Our preprocessed data contain negative values.
Correspondingly, we use LeakyRelu [2] with slope 0.2 for all
the activation functions of the inner layers. We use the sigmoid
activation function in the final layer to normalize the predictions
between 0 and 1. The final results (both the mean phase and
the standard deviation) are linearly scaled back to the original
unit (rad). To achieve high resolution enhancement, we further
adapt the generative adversarial network (GAN) by introducing
an additional discriminator network. We use the PatchGAN [3]
training procedure.

We train the BNN with an initial learning rate 10−4 and grad-
ually decrease the rate when the loss plateaus until the learn-
ing rate reaches 10−7. The batch size is two in all experiments
set by the memory limit of the GPU. All the data processing
and network training are implemented in Python using Tensor-
Flow/Keras library. The training is done on Boston University

Shared Computing Cluster using one Nvidia Tesla P100 GPU.
In Tab. S1 and Tab. S2, we provide the details of our cus-

tomized U-Net architecture with denseblock modules. The table
includes the input and output shapes, and the details of each
layer (including the number of filters, filter size, stride and acti-
vation functions). We have also made our implementation open
source along with pre-trained weights and test sample data on
our GitHub project page [4].

To process the datasets from Hela cells fixed in ethanol
and formalin, we adopted the Generative Adversarial Network
(GAN) for better learning the high-resolution cellular features.
The Generator architecture is described in Tab. S1 and Tab. S2.
The Discriminator network is detailed in Tab. S3. We do not
consider the uncertainty in the Discriminator network.

2. COMPARISON BETWEEN DROPOUT NETWORK AND
DEEP ENSEMBLES

Here, we present the uncertainty predictions using the dropout
network (DO) and deep ensembles (DE) on Hela (fixed in
ethanol) dataset. We observe that both two approaches con-
verge to very similar results. In DO, the predictions results
are obtained by activating the dropout layers in the prediction
stage and take 16 output ensembles. In DE, we independently
trained 8 identical networks using the same procedure. The
variations in the output are resulted from the random weight

https://doi.org/10.1364/OPTICA.6.000618


Supplementary Material 2

Table S1. Detailed implementation of our network structure. Notations: B: batch size, N: number of kernels, K: kernel size, S:
stride

Layer name Input shape Output shape Comments

Inputlayer None B× 384× 384× 5 None

Conv2D1 B× 384× 384× 5 B× 384× 384× 64 N64K3S1, LeakyReLU(0.2)

DB1 B× 384× 384× 64 B× 384× 384× 112 denseblock

Pool1 B× 384× 384× 112 B× 192× 192× 112 Maxpooling

Conv2D2 B× 192× 192× 112 B× 192× 192× 128 N128K3S1, LeakyReLU(0.2)

DB2 B× 192× 192× 128 B× 192× 192× 176 denseblock

Pool2 B× 192× 192× 176 B× 96× 96× 176 Maxpooling

Conv2D3 B× 96× 96× 176 B× 96× 96× 256 N256K3S1, LeakyReLU(0.2)

DB3 B× 96× 96× 256 B× 96× 96× 304 denseblock

Pool3 B× 96× 96× 304 B× 48× 48× 304 Maxpooling

Conv2D4 B× 48× 48× 304 B× 48× 48× 512 N512K3S1, LeakyReLU(0.2)

DB4 B× 48× 48× 512 B× 48× 48× 560 denseblock

DO4 B× 48× 48× 560 B× 48× 48× 560 dropoutrate0.5

Pool4 B× 48× 48× 560 B× 24× 24× 560 Maxpooling

Conv2D5 B× 24× 24× 560 B× 24× 24× 1024 N1024K3S1, LeakyReLU(0.2)

DB5 B× 24× 24× 1024 B× 24× 24× 1072 denseblock

DO5 B× 24× 24× 1072 B× 24× 24× 1072 dropoutrate0.5

Up2d5 B× 24× 24× 1072 B× 48× 48× 512 N512K2S1, LeakyReLU(0.2)

Concatenate5 B× 48× 48× 512 B× 48× 48× 1072 Up2d5andDB4

Conv2D6 B× 48× 48× 1072 B× 48× 48× 512 N512K3S1, LeakyReLU(0.2)

DB6 B× 48× 48× 512 B× 48× 48× 560 denseblock

Up2d6 B× 48× 48× 560 B× 96× 96× 256 N256K2S1, LeakyReLU(0.2)

Concatenate6 B× 96× 96× 256 B× 96× 96× 560 Up2d6andDB3

Conv2D7 B× 96× 96× 560 B× 96× 96× 256 N256K3S1, LeakyReLU(0.2)

DB7 B× 96× 96× 256 B× 96× 96× 304 denseblock

Up2d7 B× 96× 96× 304 B× 192× 192× 128 N128K2S1, LeakyReLU(0.2)

Concatenate7 B× 192× 192× 128 B× 192× 192× 304 Up2d7andDB2

Conv2D8 B× 192× 192× 304 B× 192× 192× 128 N128K3S1, LeakyReLU(0.2)

DB8 B× 192× 192× 128 B× 192× 192× 176 denseblock

Up2d8 B× 192× 192× 176 B× 384× 384× 64 N64K2S1, LeakyReLU(0.2)

Concatenate8 B× 384× 384× 64 B× 384× 384× 176 Up2d8andDB1

Conv2D9 B× 384× 384× 176 B× 384× 384× 64 N64K3S1, LeakyReLU(0.2)

DB9 B× 384× 384× 64 B× 384× 384× 112 denseblock

Conv2D10 B× 384× 384× 112 B× 384× 384× 16 N32K3S1, LeakyReLU(0.2)

Conv2D11 B× 384× 384× 16 B× 384× 384× 2 N2K3S1, So f tmax



Supplementary Material 3

Table S2. Details on denseblock module. Notations: B: batch size, N: number of kernels, K: kernel size, S: stride, R: number of
rows of input tensor, C: number of columns of input tensor, L: number of layers of input tensor.

Layer name Input shape Output shape Comments

Inputlayer None B× R× C× L None

BN1 B× R× C× L B× R× C× L BatchNormalization

ReLU1 B× R× C× L B× R× C× L ReLU

Conv2D1 B× R× C× L B× R× C× 16 N16K3S1

DO1 B× R× C× 16 B× R× C× 16 dropoutrate0.5

Concatenate1 B× R× C× 16 B× R× C× (L + 16) InputlayerandDO1

BN2 B× R× C× (L + 16) B× R× C× (L + 16) BatchNormalization

ReLU2 B× R× C× (L + 16) B× R× C× (L + 16) ReLU

Conv2D2 B× R× C× (L + 16) B× R× C× 16 N16K3S1

DO2 B× R× C× 16 B× R× C× 16 dropoutrate0.5

Concatenate2 B× R× C× 16 B× R× C× (L + 32) Concatenate1andDO2

BN3 B× R× C× (L + 32) B× R× C× (L + 32) BatchNormalization

ReLU3 B× R× C× (L + 32) B× R× C× (L + 32) ReLU

Conv2D3 B× R× C× (L + 32) B× R× C× 16 N16K3S1

DO3 B× R× C× 16 B× R× C× 16 dropoutrate0.5

Concatenate3 B× R× C× 16 B× R× C× (L + 48) Concatenate2andDO3

Table S3. Details on discriminator network. Notations: B: batch size, N: number of kernels, K: kernel size, S: stride. No zero
padding in convolution layers.

Layer name Input shape Output shape Comments

Inputlayer None B× 96× 96× 1 Diced patches

Conv2D1 B× 96× 96× 1 B× 46× 46× 64 N64K5S2, LeakyReLU(0.2)

Conv2D2 B× 46× 46× 64 B× 21× 21× 64 N64K5S2, LeakyReLU(0.2)

Flatten B× 21× 21× 64 B× 28224 Flatten

FC1 B× 28224 B× 512 f ullyconnected(512), LeakyReLU(0.2)

FC2 B× 512 B× 512 f ullyconnected(512), LeakyReLU(0.2)

DO1 B× 512 B× 512 dropoutrate0.4

FC3 B× 512 B× 512 f ullyconnected(512), LeakyReLU(0.2)

DO2 B× 512 B× 512 dropoutrate0.4

FC4 B× 512 B× 1 f ullyconnected(1), So f tmax



Supplementary Material 4

initialization, dropout, and stochastic gradient descent training
algorithm. The uncertainty maps are calculated following the
procedure discussed in the main article.

3. DATA ACQUISITION

Our technique is tested on two LED array based computational
microscope setups detailed in [5, 6] and five different types of
biological samples. We capture intensity measurements using
both sequential and our five multiplexed illumination patterns.

On setup [5], we collect data on unstained Hela cells prepared
with two fixation conditions, including ethanol and formalin.
All images are captured using a 4×, 0.1 NA objective (Nikon CFI
Plan Achromat). The ethanol fixed Hela data contains 22 full-
FOV measurements. The formalin fixed Hela data contains 19
full-FOV measurements. Each group consists of the multiplexed
data (2 brightfield and 3 darkfield images) and the correspond-
ing sFPM data (185 images). Both the multiplexed and sFPM
data are captured with the same 0.41 illumination NA, providing
0.51 NA final resolution.

We validate our technique on the data from [6]. The multi-
plexed measurements are synthesized by summing the sFPM im-
ages. We experimentally validate this procedure on setup [5] and
find the numerically synthesized multiplexed intensity closely
match with the physically captured measurement since the LEDs
are spatially and temporally incoherent. We test our method on
both fixed (U2OS, and MCF10A cells) and dynamic (live Hela
cells) biological samples. The data from fixed U2OS cells and
live Hela cells were captured with a 4×, 0.2 NA objective (CFI
Plan Apo Lambda), and 0.6 illumination NA, that provide 0.8
final NA . The data from fixed MCF10A cells were captured
with a 4×, 0.2 NA objective (CFI Plan Apo Lambda), and 0.5
illumination NA, that provide 0.7 final NA . The fixed U2OS data
contains a single full FOV measurement. The fixed MCF10A
data contains a single full FOV measurement. The dynamic Hela
cell data contains a time series experiment over the course of 4
hours consisting of 120 full-FOV frames taken at 2 min intervals.
Each dataset contains synthesized multiplexed (2 brightfield and
3 darkfield images) and corresponding sFPM data.

4. DATA PREPARATION

We discuss the data preparation in the following three parts:
1) ground truth phase calculation, 2) training and testing data
separation, and 3) training and testing data preprocessing.

Distinct from computer vision applications, biomedical mi-
croscopy is often lack of ground truth that can only be approxi-
mated by alternative methods. Here, we adopt the strategy in [7]
and use the phase reconstructed from sFPM as the ground truth.
We use the algorithm in [8] to perform sFPM reconstruction. In
practice, sFPM reconstructed phase contains several types of ar-
tifacts originated from phase wrapping, model mis-calibration,
and noise propagation in the phase-retrieval algorithm, which
have to be carefully taken into account in our data analysis.

First, due to the fixation, the cells contain phase values larger
than 2π, so the raw sFPM phase map exhibits many phase wrap-
ping artifacts. We use the algorithm in [9] to unwrap the phase.
Examples from this procedure are detailed in Sec. 5.

The unwrapped phase typically suffers from a slowly varying
background artifact. Our “ground truth phase” preprocessing first
corrects for this using the morphological opening algorithm, and
generate the background removed phase yraw. Next, we perform

dynamic range correction by choosing a threshold τ satisfying

P{yraw
i < τ| for all yraw

i ∈ yraw} = 0.999, (S1)

which sets the corrected phase to be within [0, τ] and clips the
0.1% pixels having extreme values to be τ. Next, the phase is
linearly normalized to [0, 1] by dividing the image by τ. The
phase map is then cropped into small patches for training. Still,
the unwrapped phase contains residual isolated errors typically
around large-phase or complex cellular features. This results in
incorrect “phase labels” in the training data that later affects the
prediction. The impact of incorrect labels and phase clipping to the
UL are analyzed in the main text.

Second, spatially varying aberrations [10] and illumination
mis-calibration [11] are the main source of model mis-calibration
induced errors in both sFPM and our multiplexed measurements.
To perform high-quality sFPM reconstruction, we first calibrate
the illumination angles using the algorithm in [11] prior to the
reconstruction, and then digitally correct for the aberrations
using the algorithm in [8].

In contrast, our BNN does not directly take any calibration
information when constructing the network. The BNN learns
the spatially varying imaging model indirectly from informa-
tion contained in the multiplexed intensity measurements and
the matching ground truth phase. We design our experiment
to test the robustness of our technique against these spatially
varying model errors, as well as the predictive power of UL to
out-of-distribution data. During the training, data from only
a limited FOV region are given to the BNN. By doing so, the
aberration and misalignment information from the rest of the
FOV has never been seen by the BNN. These correspond to out-
of-distribution data that should lead to larger uncertainty in a
well-calibrated neural network [12]. During the testing, data
that have never been used in the training and from the entire
FOV are used. The results are detailed in the main text.

Third, even after careful model calibrations, the sFPM phase
still inevitably contain reconstruction noise [13], which we
termed the intrinsic phase noise. Following [6], we measure
the standard deviation in the background region and treat it as
the intrinsic phase noise. We assume that the same noise level is
uniformly distributed also across the sample (e.g. cell) regions.
This noise level sets the tightest credible interval our BNN can
provide; the detailed analysis is presented in the main text.

To pre-process the intensity measurements, first we remove a
constant background estimated from the histograms. Negative
values in the darkfield images are set to zero since they are
primarily from shot noise [8, 13]. Second, we perform dynamic
range correction (same as ground truth phase preprocessing).
Third, we divide the full FOV into small patches. Next, we
perform cubic interpolation on the intensity patches so that the
input to the BNN has the same pixel numbers as the ground
truth phase. For training, the matching phase and intensity
patches are fed into the BNN. For testing, we apply additional
corrections to intensity patches from the untrained FOV region to
alleviate the out-of-distribution effect. For an intensity patch Pi
from the untrained region, we perform mean equalization to match
the mean with that from the trained region:

P̃i = Pi
µPtrained

µPi

for Pi ∈ untrained region, (S2)

where µPi and µPtrained denote the intensity mean from the un-
trained and trained region, respectively. We find this procedure
is essential to improve the BNN’s generalization to spatially



Supplementary Material 5

Fig. S1. Comparison between two BNN implementations: Dropout network and Deep ensembles. Both implementations give
similar uncertainty quantification results and match with prediction error well.



Supplementary Material 6

varying model errors. However, mean equalization only com-
pensate for the mismatch in the first order statistics. As a result,
we expect the BNN should still predict larger uncertainty in the
untrained regions, as demonstrated in the main text.

5. PHASE UNWRAPPING EXAMPLES

Our samples from the Hela cells fixed in ethanol and in forma-
lin have a large phase range larger than 2π. The raw phase
reconstructed from sFPM contain significant amount of phase
wrapping artifacts. Before feeding into network for training,
the phase images are unwrapped using a least-square based
algorithm [9]. Fig. S2 illustrates a few representative examples
before and after the phase unwrapping.

6. COMPARISON BETWEEN ALGORITHMS

Because of the highly multiplexed illumination scheme, the un-
derlying inverse problem is highly nonlinear and ill-posed. In
Fig. S3, we compare the phase prediction from the proposed
BNN with two state-of-the-art model-based algorithms, includ-
ing the linear differential phase contrast (DPC) model [14] and
the multiplexed Fourier Ptychographic microscopy (mFPM) al-
gorithm [6]. Our results show that DPC can only reconstruct
phase with limited resolution. The mFPM can recover slightly
more high frequency details by taking into account the dark-
field measurements; however, the results also suffer from many
high frequency artifacts. Our BNN can consistently provide
high-quality high resolution phase reconstructions. In terms of
the processing speeds, the time for processing a 384× 384-pixel
patch is 6 seconds for the mFPM algorithm and 0.12 second for
our BNN to make 16 prediction ensembles.

7. EFFECT OF TRAINING SAMPLE TYPE AND SETUP

In Fig. S4, we provide additional examples of the BNN under
different training and testing configurations. The multiplexed in-
tensity measurements were synthesized using the data from [6].
In total, we test three different cases. First, the training and
testing under the same cell type and the same illumination NA
are marked in blue, as shown in the images along the main diag-
onal in Fig. S4. Second, the training and testing under different
cell types and the same illumination NA are marked in green.
Finally, the training and testing under both different cell types
and different illumination NAs are marked in orange. We see
that the networks trained and tested on the same cell type can
provide high-quality phase prediction and uncertainty quantifi-
cation. When tested on unseen cell type data under the same
illumination NA, the networks are still able to make high-quality
phase maps, with slight degradation in the reconstructed high-
frequency features. When tested on unseen cell types and using
a different illumination NA, the phase predictions degrade fur-
ther. In certain cases, severe artifacts, such as contrast reversal
can be observed. The reason why the large degradation of the
phase reconstruction using data captured from a different illu-
mination NA is because our BNN is trained to solve a specific
inverse problem with pre-defined physical parameters. As the
illumination NA changes, it changes the underlying physical
model. As a result, the BNN produces less accurate phase predic-
tions. Importantly, in all cases, the predicted uncertainty maps
can still detect and identify the potential errors in the phase
predictions, consistent with the true absolute error.

In Fig. S5, we further test if the network trained on the data
from one setup is able to make reliable predictions using the

data taken from a different setup. It is observed that the pre-
dicted phase further degrades and contains severe artifacts. This
is expected since our BNN is trained to solve a particular in-
verse problem. In our case, the two setups contain intensities
measured using different objective NAs (0.1 vs 0.2) and differ-
ent illumination NAs (0.41 vs 0.6). As a result, the intensity
measurements taken from one setup will result in severe out-of-
distribution artifacts when they are input to the BNN trained
on a different setup. Nevertheless, the uncertainty map remains
highly indicative to the prediction errors and are useful to detect
abnormalities in the data.

8. EFFECT OF TRAINING FOV

In the main article, we show that by training only in the central
FOV, the trained network is able to identify degradations in the
phase predictions made on the untrained outer FOV regions.
This shows that our BNN is able to quantify the effect of the
out-of-distribution data due to limited FOV. Here, we provide
additional examples to further support this proposition. We
train multiple BNNs using data taking from different sub-FOV
regions and then evaluate the performance on both seen and
unseen FOV regions. The two cases shown in Fig. S6 and Fig.
S7 show that both the phase prediction error and the BNN pre-
dicted uncertainty maps have higher values in the unseen FOV
regions. Quantitatively, we calculate the uncertainty level and
the absolute error from the seen and unseen FOVs under four
different training FOV configurations, including left, top, cen-
ter and outer FOV. Tab. S4 clearly demonstrates that the BNN
consistently predicts higher uncertainty level in the unseen FOV
regions.

9. COMPARISON BETWEEN BNN AND CNN

We compare prediction results using our BNN framework and
using the standard convolutional neural network (CNN). In
Fig. S8, we first demonstrate that when trained and tested on
the same cell type, the BNN and CNN provide almost identi-
cal results. The small difference in the phase predictions are
expected due to the intrinsic variations discussed in the main
text. In Fig. S9, we further compare prediction result when the
networks are tested on unseen cell types. The BNN and CNN
show comparable generalizability to variations in the sample
types. The main benefit of using BNN comes from its ability
to provide uncertainty quantification without the need for the
ground truth.

REFERENCES

1. G. Huang, Z. Liu, L. v. d. Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Conference
on Computer Vision and Pattern Recognition, (2017), pp. 2261–
2269.

2. B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evalu-
ation of rectified activations in convolutional network,”
arXiv:1505.00853 (2015).

3. P. Isola, J. Zhu, T. Zhou, and A. A. Efros, “Image-to-image
translation with conditional adversarial networks,” CoRR
abs/1611.07004 (2016).

4. Y. Xue, S. Cheng, Y. Li, and L. Tian,
“https://github.com/bu-cisl/illumination-coding-meets-
uncertainty-learning,” .



Supplementary Material 7

Fig. S2. Examples of phase unwrapping. Groundtruth phase images are unwrapped before training.

Fig. S3. Phase reconstruction results from the differential phase contrast, multiplexed Fourier ptychographic microscopy algorithm,
and our BNN using intensity measurements from the proposed illumination scheme.



Supplementary Material 8

Fig. S4. Prediction results under different training and testing data configurations. Orange: the training and testing under different
cell types and different illumination NAs. Green: the training and testing under different cell types and the same illumination NA.
Blue: the training and testing under the same cell type and the same illumination NA.



Supplementary Material 9

Fig. S5. Prediction results using data from different setups.



Supplementary Material 10

Table S4. Predicted uncertainty level on seen and unseen FOVs under different training FOVs.

Training FOV: Left Top Center Outer

Seen FOV 0.0483 0.0510 0.0387 0.0576

Unseen FOV 0.0585 0.0576 0.0465 0.0570

Fig. S6. Network trained on the left-half of the FOV and tested on the entire FOV. Both the phase prediction error and the predicted
uncertainty are higher on the unseen right-half of the FOV region.

5. R. Ling, W. Tahir, H.-Y. Lin, H. Lee, and L. Tian, “High-
throughput intensity diffraction tomography with a compu-
tational microscope,” Biomed. Opt. Express 9, 2130 (2018).

6. L. Tian, Z. Liu, L.-H. Yeh, M. Chen, J. Zhong, and L. Waller,
“Computational illumination for high-speed in vitro Fourier
ptychographic microscopy,” Optica 2, 904–911 (2015).

7. T. Nguyen, Y. Xue, Y. Li, L. Tian, and G. Nehmetallah,
“Deep learning approach for Fourier ptychography mi-
croscopy,” Opt. Express 26, 26470 (2018).

8. L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multi-
plexed coded illumination for Fourier ptychography with
an LED array microscope,” Biomed. Opt. Express 5, 2376–
2389 (2014).

9. D. C. Ghiglia and L. A. Romero, “Robust two-dimensional
weighted and unweighted phase unwrapping that uses fast
transforms and iterative methods,” J. Opt. Soc. Am. A 11,
107 (1994).

10. X. Ou, G. Zheng, and C. Yang, “Embedded pupil func-
tion recovery for Fourier ptychographic microscopy,” Opt.
Express 22, 4960–4972 (2014).

11. R. Eckert, Z. F. Phillips, and L. Waller, “Efficient illumina-
tion angle self-calibration in Fourier ptychography,” Appl.
Opt. 57, 5434 (2018).

12. V. Kuleshov, N. Fenner, and S. Ermon, “Accurate un-
certainties for deep learning using calibrated regression,”
arXiv:1807.00263 (2018).

13. L.-H. Yeh, J. Dong, J. Zhong, L. Tian, M. Chen, G. Tang,
M. Soltanolkotabi, and L. Waller, “Experimental robustness
of Fourier ptychography phase retrieval algorithms,” Opt.
Express 23, 33214–33240 (2015).

14. L. Tian and L. Waller, “Quantitative differential phase con-
trast imaging in an LED array microscope,” Opt. Express
23, 11394–11403 (2015).



Supplementary Material 11

Fig. S7. Network trained on the top-half of the FOV and tested on the entire FOV. Both the phase prediction error and the predicted
uncertainty are higher on the unseen bottom-half of the FOV region.

Fig. S8. Comparison between our BNN and standard CNN when trained and tested on the same cell type.



Supplementary Material 12

Fig. S9. Comparison between our BNN and standard CNN when tested on unseen cell types. Both network were trained on Hela
cells and tested on U2OS and MCF10A cells.


	BNN implementation
	Comparison between dropout network and deep ensembles
	Data acquisition
	Data preparation
	Phase unwrapping examples
	Comparison between algorithms
	Effect of training sample type and setup
	Effect of training FOV
	Comparison between BNN and CNN



