optica ## Faraday rotation in iron garnet films beyond elemental substitutions: supplementary material MIGUEL LEVY^{1,*}, OLGA V. BOROVKOVA², COLIN SHEIDLER¹, BRANDON BLASIOLA¹, DOLENDRA KARKI¹, FRANÇOIS JOMARD³, MIKHAIL A. KOZHAEV^{2,4}, ELENA POPOVA³, NIELS KELLER³, VLADIMIR I. BELOTELOV^{2,5} Published 10 May 2019 ## DERIVATION OF THE FARADAY ROTATION EXPRESSION The transmission coefficients for right- and left-circularly polarized light are given by $$t^{\sigma} = \left(\frac{E_3^{\sigma}}{E_i^{\sigma}}\right) = \frac{2}{\left(1 + n_3\right)\cosh\left(ik_0\tilde{n}_2h\right) - \left(\frac{n_3}{\tilde{n}_2} + \tilde{n}_2\right)\sinh\left(ik_0\tilde{n}_2h\right)}$$ (M1) where $\sigma=\pm 1$ denotes the optical polarization, E_i^σ , E_3^σ are the amplitudes of the incident and transmitted to the substrate light circularly polarized components, respectively, n_3 is the refractive index of the substrate, and where the refractive index of the ferrimagnetic film can be written as $\tilde{n}_2=\sqrt{n_2^2\pm g}$, $k_0=\frac{2\pi}{\lambda}$ is the wave number in vacuum, and λ is the wavelength [1]. From Eq. (M1) and the fact that $\sinh(ix) = i \sin x$ and $\cosh(ix) = \cos x$, one can find an expression (M2) for the transmitted light in terms of the component of the incident light $$E_{3}^{\sigma} = \frac{2E_{i}^{\sigma}}{(1+n_{3})\cos\left(\frac{2\pi}{\lambda}h\sqrt{n_{2}^{2}\pm g}\right) - i\left(\frac{n_{3}}{\sqrt{n_{2}^{2}\pm g}} + \sqrt{n_{2}^{2}\pm g}\right)\sin\left(\frac{2\pi}{\lambda}h\sqrt{n_{2}^{2}\pm g}\right)}$$ $$(M2)$$ Consequently, the Faraday rotation (M3), taking into account surface reflections and absorption losses, can be expressed as $$\theta = \frac{1}{2} \arg \left(\frac{E_3^+}{E_3^-} \right) =$$ $$= \frac{1}{2} \arg \left[\frac{(1+n_3)\cos\left(k_0\sqrt{\varepsilon_2 - g}h\right) - i\left(\frac{n_3}{\sqrt{\varepsilon_2 - g}} + \sqrt{\varepsilon_2 - g}\right)\sin\left(k_0\sqrt{\varepsilon_2 - g}h\right)}{(1+n_3)\cos\left(k_0\sqrt{\varepsilon_2 + g}h\right) - i\left(\frac{n_3}{\sqrt{\varepsilon_2 + g}} + \sqrt{\varepsilon_2 + g}\right)\sin\left(k_0\sqrt{\varepsilon_2 + g}h\right)} \right]$$ (MS), where $\varepsilon_2 = n_2^2$. ## **REFERENCE** A. Zvezdin and V. Kotov, Modern Magnetooptics and Magnetooptical Materials, *IOP* Bristol (1997). ¹Physics Department, Michigan Technological University, Houghton, Michigan 49931, USA ²Russian Quantum Center, Skolkovo, Moscow Region 143025, Russia ³Groupe d'Etude de la Matière Condensée (GEMaC), CNRS-UVSQ, Université Paris-Saclay, 78035 Versailles, France ⁴Prokhorov General Physics Institute RAS, Moscow 119991, Russia ⁵Lomonosov Moscow State University, Moscow 119991, Russia ^{*}Corresponding author: mlevy@mtu.edu