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This document provides supplementary information to "Entangled coherent states created by mixing 
squeezed vacuum and coherent light," https://doi.org/10.1364/OPTICA.6.000753. An analysis and 
measurements of the purity of ECS is provided, to show that states generated in our setup are 
highly pure entangled states, rather than mixed states. Furthermore, We have proven that our 
method of realizing ECS by feeding a beam splitter with pure CS is incompati-ble with a 
mixed superposition of NOON states with different photon numbers. To substantiate the claim 
that our scheme does approximate ECS, we have also added a weak amplitude descrip-tion of 
SV and CS mixing in Fock basis.

1. PURITY OF ECS

In this section, entanglement of ECS is examined through their
purity for quantum states having corner photon statistics.

A. ECS purity through two-photon interferences
We generalize ECS to mixed states using a parameter that we
introduce for the amount of purity of ECS, and show that this
parameter corresponds to the visibility of two-photon interfer-
ences of the measured states. A highly pure state having corner
photon statistics therefore demonstrates entanglement for any
finite amplitude. We start by defining the (mixed) ECS state, ρ̂,

ρ̂ = N 2
α,v (ρ̂1 + ρ̂2 + vρ̂coh) , (S1)

ρ̂1 = |α, 0〉〈α, 0| ,
ρ̂2 = |0, α〉〈0, α| ,
ρ̂coh = |α, 0〉〈0, α|+ |0, α〉〈α, 0| ,

where v is a parameter controls the purity of the state, and

Nα,v = 1/
√

2
(
1 + ve−|α|2

)
. For v = 1, the state in Eq. S1 is

pure, and for v = 0, the state is a mixed state of a coherent state
in the first mode (and vacuum in the second) with a coherent
state in the second mode (and vacuum in the first). The first
two terms in the density matrix (Eq. S1) are the diagonal terms
and represent the two-mode photon-number amplitudes. The

absolute value of these quantities is verified experimentally in
the main text. We only assume here that there is a phase relation
for each single mode separately (which will be proved in the
next section). According to our measurements and following
this assumption, the density matrix in Eq. S1 represents the most
general ECS.

Next, we find v by means of two-photon interferences. We
first reduce the density matrix to two-photon subspace, from
which the two-photon interference pattern is calculated as a
function of v. In the two-photon subspace, the (unnormalized)
density matrices in Fock basis are reduced as follows:

ρ̂1 → |2, 0〉〈2, 0| ,
ρ̂2 → |0, 2〉〈0, 2| ,
ρ̂coh → |2, 0〉〈0, 2|+ |0, 2〉〈2, 0| , (S2)

and then,

ρ̂2ph =
N2

α,v|α|4

2
[|2, 0〉〈2, 0|+ |0, 2〉〈0, 2|

+v (|2, 0〉〈0, 2|+ |0, 2〉〈2, 0|)] . (S3)

The two modes are then interfered by adding a phase shift
ϕ to one of the modes, and then mixing these modes together
on a 50/50 beam-splitter. This operation is represented by the
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following transformation of the two-photon states:

|0, 2〉 → 1√
2
(2|1, 1〉+ |2, 0〉+ |0, 2〉) , (S4)

|2, 0〉 → e2iϕ
√

2
(−2|1, 1〉+ |2, 0〉+ |0, 2〉) . (S5)

Finally, we calculate the coincidence probability P1,1, i.e. a cor-
relation of two photons - one in either two exit ports of the
beam-splitter, by projecting on the |1, 1〉 state,

P1,1(ϕ) = 2N2
α,v|α|4 (1− v cos ϕ) . (S6)

From Eq. S6, it is seen that the visibility of the two photon
interference in the coincidence is the ECS purity v.

To summarize, we defined a parameter, v, as a figure of merit
for the purity of the states. We showed that v can be experi-
mentally measured by the visibility of two-photon interferences,
and is measured in our setup to be v = 0.91± 0.02 (with 95%
confidence level, see Fig. S1). Thus, our measurements corre-
sponds with generating highly pure ECS, rather than mixed
unentangled states.

B. Coherence across Fock subspaces through input states
purity

In the previous subsection we showed that the two-photon inter-
ferences are indication of the purity of the interfered state. Here,
we show that the measured states must have coherences across
its Fock subspaces, if they result from a beam splitter transfor-
mation having pure coherent states as one of their inputs. This
is done through phase diffusion of ECS, i.e. generalizing of pure
ECS to mixed states having a probability distribution of ECS
with different phases.

Let us start by taking a simple example of a mixed state of
equal probability for two ECS with opposite phases (see also Eq.
1, main text):

ˆ̃ρm =
1
2
(
|ψα

ECS〉〈ψ
α
ECS|+ |ψ

−α
ECS〉〈ψ

−α
ECS|

)
. (S7)
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Fig. S1. Measurement of ECS purity. 1,1 coincidences rates
following a beam-splitter transformation are measured for
ECS in our setup, where one of its modes is phase shifted
by ϕ (circles). The measured coincidence rate are fitted with
frep ∗ P1,1(ϕ) (Eq. S6) (solid line), where frep = 80MHz, which
results with a purity value of v = 0.91± 0.02 (with 95% confi-
dence level).

Similarly to Eq. S1, we can rewrite Eq. S7,

ˆ̃ρm = N 2
α

(
ˆ̃ρm,1 + ˆ̃ρm,2 + ˆ̃ρm,coh

)
, (S8)

ˆ̃ρm,1 =
1
2

(
|α, 0〉〈α, 0|+ | − α, 0〉〈−α, 0|

)
,

ˆ̃ρm,2 =
1
2

(
|0, α〉〈0, α|+ |0,−α〉〈0,−α|

)
,

ˆ̃ρm,coh =
1
2

(
|α, 0〉〈0, α|+ |0, α〉〈α, 0|

+| − α, 0〉〈0,−α|+ |0,−α〉〈−α, 0|
)

,

where ˆ̃ρm,1 and ˆ̃ρm,2 correspond to the same photon-number
corner distribution of an ECS (as measured in Fig. 5, main text),
while the coherence of ˆ̃ρm,coh is different than that of ECS. This
departure from ECS becomes clearer when ˆ̃ρm,coh (Eq. S8) is
rewritten in Fock basis,

ˆ̃ρm,coh = e−|α|
2

∞

∑
n,m=0

αmα∗n

2
√

m! n!
(1 + (−1)m+n)

× (|m, 0〉〈0, n|+ |0, m〉〈n, 0|), (S9)

where the coherences between even and odd Fock subspaces
vanish, while the coherences within every photon number sub-
space is the same as for ECS (or NOON states). Transforming
the state ˆ̃ρm (Eq. S7) backwards through a beam splitter results
with the state

ˆ̃ρm →
1
2

(
|α/
√

2〉a|ψα/
√

2
CSS 〉b a〈α/

√
2|b〈ψα/

√
2

CSS |

+ | − α/
√

2〉a|ψ−α/
√

2
CSS 〉b a〈−α/

√
2|b〈ψ−α/

√
2

CSS |
)

,

=
1
2

(
|α/
√

2〉a〈α/
√

2|+ | − α/
√

2〉a〈−α/
√

2|
)

⊗ |ψα/
√

2
CSS 〉b〈ψ

α/
√

2
CSS | (S10)

where modes a,b are the input ports of the beam splitter. From
Eq. S10 it is seen the state of Eq. S7 is generated by feeding a
beam splitter with CS in a statistical mixture of two opposite
phases.

We note that in our setup, CS are prepared using a pulsed
mode-locked laser, where coherent pulses demonstrate nearly
prefect interference visibility by means of scanning a delay of a
Mach-Zehnder interferometer, within a pulse or between subse-
quent pulses, and therefore these CS are pure states. Therefore,
our setup cannot give rise to a statistical phase mixture of CS,
which following a beam splitter transformation would result in
a statistical mixture of NOON (Eq. S9) or entangled coherent
states (Eq. S7).

Furthermore, we can exclude a larger set of mixed ECS, or
mixed NOON states, having any coherence across Fock sub-
space, by generalizing Eq. S7 from a sum over ECS with only
two phases, to an integral over all possible phases of ECS:

ρ̂m =
∫ π

−π
C(ϑ)|ψαeiϑ

ECS〉〈ψ
αeiϑ

ECS| dϑ, (S11)

where C(ϑ) is the probability distribution function of the ECS
phase. This state is ruled out in our setup for any C(ϑ) other
than a Dirac delta function C(ϑ) = δ(ϑ), i.e. pure ECS, since the
states in Eq. S11 require CS and CSS in phase mixed states to be
fed to the beam splitter (see also Eq. S10):

ρ̂m →
∫ π

−π
C(ϑ)|αeiϑ

√
2
〉a|ψαeiϑ/

√
2

CSS 〉b a〈
αeiϑ
√

2
|b〈ψαeiϑ/

√
2

CSS | dϑ. (S12)

and as stated above, CS in our setup are pure rather than mixed
states.
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2. WEAK AMPLITUDE DESCRIPTION OF SV AND CS
MIXING IN FOCK BASIS

In addition to the discussion of fidelity to ECS (main text), we
present here a theoretical proof that mixing of a coherent state
with a squeezed vacuum state is a very good approximation
to an ECS, by showing that both states have approximately the
same amplitudes up to three photons.

First, we review the coherent and squeezed vacuum states
representation using the creation mode operators (â†, b̂†) acting
on the vacuum state:

|β〉 = e−|β|
2/2

∞

∑
n=0

(βâ†)n

n!
|0〉, β = |β|eiφ, (S13)

|ξ〉 =
1

√
cosh r

∞

∑
m=0

(−eiθ tanh rb̂†2)m

2mm!
|0〉. (S14)

By introducing the beam-splitter transformation,

a† =
1√
2
(c† + d†) , (S15)

b† =
1√
2
(c† − d†) ,

the state |βa〉 ⊗ |ξ〉b, following the beam-splitter transformation
(Eq. S15) is

|ψout〉 =
e−|β|

2/2
√

cosh r

∞

∑
m=0

∞

∑
n=0

βn(ĉ† + d̂†)n
√

2
n

n!

×
(−eiθ tanh r)m(ĉ†2 + d̂†2 − 2ĉ† d̂†)m

22mm!
|0〉c|0〉d . (S16)

Summing contributions up three photons, we apply the sum on
m for m = 0, 1. For m = 0, and n = 0, 1, 2, 3, we get the following

terms, up to a prefactor of
e−|β|

2/2
√

cosh r
:

|0〉c|0〉d +
β
√

2
(|1〉c|0〉d + |0〉c|1〉d)

+
β2

4

(√
2|2〉c|0〉d + 2|1〉c|1〉d +

√
2|0〉c|2〉d

)
+

β3

6
√

8

(√
6|3〉c|0〉d + 3

√
2|2〉c|1〉d + 3

√
2|1〉c|2〉d

+
√

6|0〉c|3〉d
)

, (S17)

and for m = 1, n = 0, 1, we get, up to the same
e−|β|

2/2
√

cosh r
prefactor,

the following terms:

(−eiθ tanh r)
4

(√
2|2〉c|0〉d − 2|1〉c|1〉d +

√
2|0〉c|2〉d

)
+

(−eiθ tanh r)
4

β
√

2

(√
6|3〉c|0〉d −

√
2|2〉c|1〉d

−
√

2|1〉c|2〉d +
√

6|0〉c|3〉d
)

. (S18)

By summing the two contributions of Eqs. S17-S18, the state of
Eq. S16, up to three photons becomes:

|ψ̃out〉 = |0〉c|0〉d +
β
√

2
(|1〉c|0〉d + |0〉c|1〉d) +

β2 − eiθ tanh r
4

√
2 (|2〉c|0〉d + |0〉c|2〉d) +

β2 + eiθ tanh r
2

|1〉c|1〉d +

( 1
3 β2 − eiθ tanh r)β

4

√
3 (|3〉c|0〉d + |0〉c|3〉d) +

(β2 + eiθ tanh r)β

4
(|2〉c|1〉d + |1〉c|2〉d) , (S19)

where a prefactor of
e−|β|

2/2
√

cosh r
has been omitted in Eq. S19. By

substituting eiθ tanh r = −β2 in Eq. S19, |ψ̃out〉 becomes:

|ψ̃out〉 = |0〉c|0〉d +
β
√

2
(|1〉c|0〉d + |0〉c|1〉d) +

β2
√

2
(|2〉c|0〉d + |0〉c|2〉d) +

β3
√

3
(|3〉c|0〉d + |0〉c|3〉d) , (S20)

where in Eq. S20, we retrieve the corner-like photon number
distribution, for low photon number. We note that the condition
eiθ tanh r = −β2, that was applied on Eq. S20 is similar to the
condition found in the main text; tanh r = |β|2 = |α|2/2, instead
of sinh 2r = |α|2 (main text, Eq.9), which is approximately the
same condition for small r. Under this approximation, the terms
of the corner-like state, for α =

√
2β match those of ECS, up to

three photons [1]:

|ψ̃out〉 =
1
2

(
2|0〉c|0〉d + α (|1〉c|0〉d + |0〉c|1〉d) +

α2
√

2
(|2〉c|0〉d + |0〉c|2〉d) +

α3
√

6
(|3〉c|0〉d + |0〉c|3〉d)

)
, (S21)

while the omitted prefactor in |ψ̃out〉,
e−|β|

2/2
√

cosh r
, is also approx-

imated by 2Nαexp(−|α|2/2) (see Eq. 1, main text) for small r
.
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