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1. Zak phase and the emergence of the topological
corner stateThe topological corner states discussed in the main text originate from the nontrivial Zak phase of the occupied bulk states. A nontrivial Zak phase of the occupied bulk states is a dipole moment that leads to edge states. These edge states appear as a projection of the dipole vector on edges, e.g. along x-direction. Besides, if the bulk states have a nontrivial dipole moment in another direction, e.g. along y-direction, these two nonequivalent dipole moments form a quadrupole moment. Then corner states appear as a double projection of quadrupole tensor on corners.  On the other hand, the emergence of corner states can also be regarded as a projection of the dipole vector of the occupied edge states. As these edge states inherit the topological properties of the bulk states and corners can be considered as “edges” of edges. This hierarchical picture naturally leads to the following definition of quadrupole moment tensor as [1] 
where Px and Py are dipole moments along x- and y- directions, respectively. The relation of dipole moment Pi along i-direction (i can be either x or y) and Zak phase, ࢑ࢇࢆ࢏ࣂ, is given as [2] 
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where the integration is along a straight path in i-direction that connects two equivalent k points in 1st Brillouin zone, and ψ is the periodic parts of Bloch functions. In our case, for calculating ࢑ࢇࢆ࢏ࣂ, we used the profile of magnetic field component vertical to the slab at each point of the momentum space. A 2D Zak phase, ࢑ࢇࢆࣂ = ൫࢑ࢇࢆ࢞ࣂ,  for x and y directions.       In general cases, dipole moments are not quantized. However, when the inversion symmetry (C2 point group symmetry in 2D systems) is present, Pi becomes quantized and can only be either 0 or ½. This quantization is related to a topologically protected winding number of sewing matrix of the occupied bulk states associated with the inversion symmetry. By applying group theory, one finds that the quantization value of dipole moments is solely determined by the parities of the occupied bulk states at high symmetric k points in 1st Brillouin zone, which is given as [3] ࢑ࢇࢆ࢏ࣂ ൯, can be deduced from respective calculations of࢑ࢇࢆ࢟ࣂ
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where the summation is taken over all the energy bands below the band gap, Xi indicates either X or Y points in 1st Brillouin zone, and 
ηn(k) is the parity of the n-th energy band at k point.  According to Eqs. (S1) and (S3), we see that if the occupied bulk state has opposite parities at Γ and X (Y) points, nontrivial dipole and quadrupole moments form, together with the emergences of topological edge and corner states in finite samples.       For the designed photonic crystal, it has C4v point group symmetry, which is suitable for applying Eq. (S3). As displayed in Figs. 1(e) to (g) of the main text, the lowest photonic band in the designed photonic crystal can possess opposite parities at Γ and X (Y) points by tuning the air hole size d2. Through tuning d2, a band inversion happens at d1=d2, where d1 is another air hole size in the designed photonic crystal. For d2< d1, inverted band structure (the lowest photonic band) that has opposite parities at Γ and X (Y)points forms and so that nontrivial topological dipole and quadrupole moments of bulk states. This nontrivial topological quadrupole moment induces the topological corner states observed in the main text. The band inversion can also occur by shifting the center of unit cell by half a period in the uniform PhC, which corresponds to simply exchanging the hole sizes between d1 and d2. 
2. Simulating spectral responses around the cornerWe computed the spectral responses plotted in Fig. 3(a) in the main text by using the 2D finite difference time domain (FDTD) method. For the corner spectrum, we allocated the refractive index distribution for the corner made of topologically-distinct PhCs as in Fig. 3(b). The simulation domain was terminated by perfectly matched layers. We put a few current sources at the locations with low spatial symmetry, ensuring the excitation of all the possible modes around the corner. The current sources with lengths of the simulation grid functioned as point dipole radiators. In the time domain, each dipole source emitted an impulse, which equals to while light in the spectral domain. Then, we recorded free evolutions of electromagnetic components at various locations around the corner with low spatial symmetry. The total number of the simulation steps was 32,768, where the time step was set slightly below the stability limit of the simulator. To obtain spectra, we performed Fourier transformation on the recorded time responses. The spectrum for the corner in Fig. 3(a) was of the y-component of electric field (Ey) recorded at (x, y) = (14.1a, 0.1a), where the tip of the corner was taken as the origin of the coordinate. For the spectra of the bulk and 1D edge, we simply replaced the dielectric object to those corresponded in the same simulator and followed the same procedure.  
3. Numerical analysis on the device used for the
experimental characterizationThe PhCs used for the experiment were designed with either d1 = 0.6a or 0.7a, while keeping d2 = 0. In the 3D simulations, the lattice constant, a, was set to 335 nm for the case of d1 = 0.6a and to 375 nm for d1 =0.7a. The slab thickness was 180 nm. The computed mode distributions are very similar with that presented in Fig. 3(b) in the main text. Using the 3D FDTD method, we computed Q factors of 16,000 for d1 = 0.6a and 1,800 for d1 = 0.7a. Experimentally, we measured a Q factor of ~2,500 for d1 = 0.6a (see the main text) and 600 for d1 =0.7a. The resonant wavelength of the corner mode was computed to be 1110 nm (1090 nm) for d1 = 0.6a (0.7a). The frequency separation between the corner mode 

and the edge of the 1D waveguide modes was calculated by the 3D FDTD method with a similar procedure taken for simulating the spectral response at the corner presented in the previous section. The computed separation of 24 meV (41 meV) for the PhC designed with d1 of 0.6a (0.7a) was well comparable with that measured, 21 meV (38 meV).   
4. Calculating eigenspectra for topological photonic
crystals with cornersFor better understanding of the behavior of the PhC investigated in this  study, we computed eigenspectra of the topological  PhCs covered with trivial PhCs. We considered the same PhC in the main text designed with d1 = 0.7a and d2 = 0.1a. The PhC was patterned into a square shape with a size of 9a×9a and was terminated with the corresponding trivial PhC. The total area of the simulation was 18a×18a. To simulate eigenmodes in this structure, we used the 2D plane wave expansion method (i.e. forced periodic boundary conditions). Figure S1 shows a computed distribution of eigenvalues plotted as a function of eigenmode number. A frequency gap is observable between the frequencies of 0.33a/λ and 0.36 a/λ, which reasonably coincide with the mode gap  discussed  in the main text. Within the gap, there  are  four  eigenstates around a frequency of 0.343 a/λ. As expected, they  originate from stationary modes localized around the corner. The slight energy dispersion observable in the four states arises from the mutual coupling of the four topological corner states, due to the finite size of the PhC. 

Fig. S1. Calculated eigenmode spectrum. 
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