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1. ORIENTATION DEPENDENCY OF OMC PROPERTIES

A. Definition of coordinate systems and rotated dielectric and
photoelastic tensor

We start by defining the coordinate systems. The global coor-
dinate system is fixed with the nanobeam with axis labeled by
x, y, z, and the material coordinate system coincides with the
crystal axis of LN, denoted by X, Y, Z. Note that for Euler angles
which rotate the axis of the global coordinate system to the ma-
terial coordinate system, the corresponding rotation matrix can
be applied to transform the tensor components in the material
system to the global system.
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Fig. S1. Definition of the coordinate systems for (a) X-cut LN
and (b) Y-cut LN. The global coordinate system is shown with
thicker and shorter arrows, labeled with x, y, z. The material
coordinate systems are shown with thinner and longer arrows,
labeled with X, Y, Z. The nanobeam is parallel to the global
x axis. The in-plane rotation angle φ is defined as the angle
between x and Z axis in both case.

We first give the rotation matrix used for X-cut LN (LNX) and

Y-cut LN (LNY) with in-plane rotation angle φ as

RLNX(φ) =


0 sin φ cos φ

0 − cos φ sin φ

1 0 0

 , (S1)

RLNY(φ) =


− sin φ 0 cos φ

cos φ 0 sin φ

0 1 0

 . (S2)

The global coordinate system and the rotated material systems
are shown in fig. S1. The corresponding Euler angles in ‘z-x-z’
convention are (α, β, γ) = (φ−π/2,−π/2,−π/2) for LNX and
(α, β, γ) = (φ− π/2,−π/2, π) for LNY.

The photoelastic tensor components of the rotated crystal in
the global coordinate system are then given by

p′ijkl(φ) = Rim(φ)Rjn(φ)Rkp(φ)Rlq(φ)pmnpq. (S3)

Repeated indices are to be summed. The components of the
rotated photoelastic tensor in the global coordinate system are
given in Sec. 6.

For both LNX and LNY, the rotated dielectric tensor is

ε′ =


ε11 + ∆εeo cos2 φ cos φ sin φ∆εeo 0

cos φ sin φ∆εeo ε11 + ∆εeo sin2 φ 0

0 0 ε11

 , (S4)

where ∆εeo = ε33 − ε11.

https://doi.org/10.1364/OPTICA.6.000845
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B. Simulation of optomechanical coupling rate
With the rotated dielectric and photoelastic tensor components,
the photoelastic contribution of the optomechanical coupling is
given by [S1]

g0,PE = −ωc

2

∫
E · ∂ε

∂α · EdV∫
E · DdV

, (S5)

where α parametrizes the mechanical motion amplitude, and
∂εij/∂α = −εikεl j pklmnSmn/ε0. For isotropic media with re-
fractive index n, the photoelastic induced change in dielectric
constant simplifies to ∂εij/∂α = −ε0n4 pijmnSmn.

Consider the qualitative dependence of photoelastic contribu-
tion to the optomechanical coupling rate g0. For breathing me-
chanical modes, the dominating strain component is Syy in the
global coordinate system. Similarly, for TE optical modes, the pri-
mary electric field component is Ey. As a result, the largest pho-
toelastic contribution to g0 is from E2

y∂εyy/∂α ≈ −ε0n4 p′22SyyE2
y.

This suggests that we focus on the p′22 component of the rotated
crystal in the global coordinate system.
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Fig. S2. Rotated photoelastic tensor component p′22 for LNX
(solid blue) and LNY (dashed red).

We use photoelastic components from Ref. [S2] for numerical
evaluations. The p′22 component of LNX and LNY is plotted in
fig. S2. The maximal p′22 can be achieved on LNX with φ = 135
degree, where p′22 = (p11 + p33 + p13 + p31)/4 + p44 − (p14 +
p41)/2 ≈ 0.3.

For the moving boundary contribution of the optomechanical
interaction, we approximate LN as an isotropic dielectric ma-
terial with refractive index n =

√
εLN = 2.2. The contribution

from moving boundary is [S1]

g0,MB = −ωc

2

∮
(Q · n)(∆εE2

‖ − ∆ε−1D2
⊥)dS∫

E · DdV
, (S6)

where ∆ε ≡ εLN − εair, ∆ε−1 ≡ ε−1
LN − ε−1

air , Q is the normalized
displacement field and n is the surface norm pointing towards
the air. The subscripts ‖ and ⊥ denote the parallel and per-
pendicular component of the fields locally with respect to the
surface.

We assume same mode profiles for different φ as a first-order
approximation to calculate the φ-dependence of the optomechan-
ical coupling rate g0. We evaluate eq. S5 and eq. S6 for different
φ. In fig. S3 we show the photoelastic contribution g0,PE (dashed
red), moving boundary contribution g0,MB (dashed dotted yel-
low) and the absolute values of the total g0 (blue). From fig. S2,

0 45 90 135 180
 (degree)

-50

0

50

100

150

200

250

g 0/2
 (k

H
z)

total
photoelastic
moving boundary

0 45 90 135 180
 (degree)

-50

0

50

100

150

200

250

g 0/2
 (k

H
z)

(a) (b)
LNX LNY

Fig. S3. Simulation of optomechanical coupling rate g0 on (a)
X-cut and (b) Y-cut LN for different in-plane rotation angle φ.

it is clear that p′22 is a good indicator of the optomechanical
coupling rate.

C. Measurements of optical quality factors and optomechani-
cal coupling rates with various φ

We fabricated OMCs on both LNX and LNY with various val-
ues of φ. The measured optical quality factors are shown in
fig. S4(a, b). No obvious dependence of quality factors on φ is
observed. The quality factors on LNY are generally lower due to
fabrication variations between different chips. The mechanical
quality factors at room temperature are typically Qm ∼ 4000.
The room-temperature Qm is limited by thermoelastic damping
and is relatively insensitive to crystal orientations. At cryogenic
temperature, the highest mechanical Qm = 37, 000 is observed
on the LNY OMC with φ = 0, where the y-symmetry of the
nanobeam is recovered.

In fig. S4(c, d) we show the measured optomechanical cou-
pling rates g0 versus OMC orientation angle φ. The coupling
rates were measured at room temperature (300 K) using cali-
brated thermal mechanical noise power spectral density [S3].
The measured g0’s are in general roughly smaller than the sim-
ulated values by ∼ 50%. We attribute this discrepancy to the
approximation of mode profiles, the fact that the design is only
optimized for φ = 0 on LNY, the possible differences in the
material properties between simulation and the actual LNOS
wafers, and the considerable uncertainties of LN’s photoelastic
components [S2].

Despite the discrepancy between the absolute values of the
simulated and measured g0, we observe that the maximal op-
tomechanical coupling rate occurs at φ = 135◦ on LNX, agreeing
with the simulations (fig. S3(a)) and also the simple prediction
from p′22 (fig. S2). The optimal orientations on LNY are near
φ = 45◦ and φ = 135◦, reasonably matching the simulation
results in fig. S3(b).

2. THERMAL-OPTICAL SHIFT AND THERMAL RELAX-
ATION

A. Thermal-optical shift
We observed a thermal-induced optical shift when scanning
the laser over the optical cavity with different powers. The
thermal-induced optical shift is well understood in silicon mi-
crocavities [S4]. To better understand the thermal-optical shift
on LN OMC, we briefly describe the silicon case here.

In silicon microcavities, the heat absorption rate is propor-
tional to the intracavity photon number nc, leading to a local
temperature change proportional to nc. The temperature change
affects the optical mode via thermal expansion and temperature-
dependent refractive index change, both result in a wavelength
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Fig. S4. Optical quality factor Q and optomechanical coupling rate g0 on LNX and LNY. (a, b) Measured total (blue) and intrinsic
(red) optical quality factors on LNX (a) and LNY (b). No obvious dependency on in-plane rotation φ can be observed. The quality
factors on LNY are generally lower due to fabrication variations between different chips. (c, d) Measured zero-point optomechani-
cal coupling rate g0 for different φ on LNX (c) and LNY (d). Blue (red) data points represent measurement with detuning ∆ = −ωm
(∆ = ωm). Error bars represent one standard deviation obtained by repeated measurements with different laser pump power.

shift that’s linear with respect to the temperature change. A
positive wavelength shift is usually observed for an increase in
temperature. When the laser frequency approaches the optical
cavity from the blue side, nc, the temperature increase, and the
optical cavity shifts red. When the laser reaches beyond the
maximum wavelength shift which occurs for maximum nc at
the reflection dip, nc starts decreasing. The cavity shifts back
towards the blue side as a result of decreasing nc, which further
decreases nc. This causes the cavity to jump back to nearly its
original wavelength. The cavity red shift reflects itself in the
continuous blue-to-red laser wavelength sweep as a slow slope
which gets flatter for higher power. The mode escapes after
the laser has passed the maximum shifted wavelength, giving a
sharp jump in the transmission or reflection spectrum similar to
Fig S5(a).

The thermal-induced optical shift ∆λ we observed on the
LN OMC is qualitatively similar to silicon, but the wavelength
shifts faster than linear and could be as large as few nanome-
ters at high laser powers. As shown in fig. S5(a), the reflec-
tions were measured for linearly increasing laser scan pow-
ers, vertically displaced for viewing purposes. We extract the
maximum wavelength shifts ∆λmax (fig. S5(b)) as well as min-
imum reflections at the resonance dip T0 versus laser powers
(fig. S5(c)). A sharp transition occurs near a threshold laser
power Pin, thres = 0.065 mW. The wavelength shifts slow down
and the transition dips get shallower.

With the coherent spectroscopy method, we confirmed that
with powers Pin > Pin, thres and nc as high as 1.5× 105, the cavity
linewidth stays roughly constant regardless of the increasing
T0 (see sec. 3). Little additional loss is introduced by the high
optical powers used in our measurements. We conclude that the
increase in T0 is due to an “early escape” of the mode, where
∆λ saturates and the cavity escapes back to far blue before the
laser reaches the reflection dip. Based on measurements of the
reflection dip T0 = |(i∆ + κ/2 − κe)/(i∆ + κ/2)|2, we could
obtain the detuning ∆ right before the mode escapes and calcu-
late the corresponding intracavity photon number nc. This nc is
the maximal intracavity photon number obtained for each laser
power. The results are shown in fig. S5(d). For laser powers be-
low Pin, thres, the maximal nc grows linearly with respect to input
powers. When nc reaches nc,thres ∼ 1.4× 105 at Pin = Pin,thres,
the intracavity photon numbers are observed to saturate at val-
ues near nc,thres, largely deviating from the linear relation (red
line) regardless of increasing laser powers. Similar threshold be-
haviors in terms of nc were observed on different OMC devices
and showed no obvious correlation with the optical quality fac-
tors. The physical mechanism leading to the threshold and the
dependence of nc,thres on system parameters are not understood
and will be the subject of further exploration.

For nc smaller than the threshold, we plot the wavelength
shifts versus the intracavity photon numbers before nc,thres in
fig. S5(e). A quadratic relationship between wavelength shift
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Fig. S5. Thermal-optical shift measurements. (a) Reflection signal of laser wavelength scan at increasing powers. Vertically dis-
placed for viewing purposes. The vertical dashed line represents the cavity wavelength at low power. (b) Maximum optical cavity
wavelength shift versus laser power, extracted from (a). (c) Minimum reflection T0 at the resonance versus laser power, extracted
from (a). (d) Maximal intracavity photon number versus laser power. (e) Wavelength shifts versus nc before saturation (blue dots)
and a quadratic fit (red line).

and intracavity photon number is obtained with ∆λ = α2n2
c

where we call α2 the quadratic thermal-induced cavity shift
coefficient. α2 ∼ 6× 10−11 nm/(photon)2 is obtained from the
fit. The cavity shift could also be expressed in terms of frequency
shift ∆ωc = α2n2

c where α2 ∼ −7 Hz/(photon)2. We observed
that the measured ∆λ is well characterized by the quadratic
fit for 104 . nc . 105 and deviates from the fit at low and
high power, showing that the actual thermal-induced cavity
shift has a complicated dependency on nc, including a small
linear nc term and also terms with higher order. The quadratic
contribution already dominates the wavelength shift when the
shift is noticeable with ∆λ & κ, making the linear term difficult
to measure.

B. Measurement of the thermal relaxation rate
In this section we consider the response of the cavity to a laser
pump with slow and weak amplitude modulation. We first
define related parameters and variables in Table S1. When re-
ferring to the steady-state values at a constant power, quantities
are denoted with a bar.

We start by assuming a linear thermal-optical shift of the
optical cavity frequency with respect to temperature change

∆ωc = C0∆T. (S7)

Then dynamics of the temperature change is modeled by

d∆T
dt

= −Γ∆T + f (nc), (S8)

where nc = κeṄin/(∆2 + (κ/2)2) is the instant intracavity pho-
ton number and Ṅin = Pin/(h̄ωc) is the input photon flux of

the pump. An exponential temperature relaxation with rate Γ is
assumed. We also assume that the heating effect only directly
depends on intracavity photon number nc via a general function
f . The dynamical equation could be formulated in terms of the
cavity shift ∆ωc as

d∆ωc

dt
= −Γ∆ωc + C0 f (nc). (S9)

This equation describes the complicated dynamics of ∆ωc which
also enters f (nc) implicitly via nc. C0 can be absorbed into the
function f so that f has the dimension of (rad/s)2. We will omit
C0 from now on. Note that eq. S9 gives the steady-state cavity
shift ∆ωc = f (n̄c)/Γ from which we could solve ∆ωc and n̄c if
f and Γ are known.

Based on eq. S9, we consider small time-dependent variations
of laser power δPin near the steady state solution. The laser
wavelength is kept fixed. Note that nc is a function of ∆ and Pin
so that

dδ∆
dt

= −Γ(∆ωc + δ∆) + f (n̄c) + f ′(n̄c) · δnc (S10)

= −Γδ∆ + f ′(n̄c) ·
(

n̄cδPin

Pin
− 2n̄c∆̄δ∆

∆̄2 + (κ/2)2

)
(S11)

= −(Γ + Γ2)δ∆ + f ′(n̄c)n̄c ·
δPin

Pin
, (S12)

where

Γ2 =
2∆̄

∆̄2 + (κ/2)2 · f ′(n̄c)n̄c = g(∆̄) · h(n̄c). (S13)
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Table S1. Definition of parameters related to thermal relaxation rate measurements.

Parameter Description Useful relation

Pin input laser power

∆T temperature change

∆ωc thermal-induced cavity shift ∆ωc = α1nc + α2n2
c

∆ real-time cavity-laser detuning ∆ = ωc −ωl + ∆ωc

Ṅin input photon flux Pin/(h̄ωl)

nc intracavity photon number nc = κeṄin/(∆2 + (κ/2)2)

δPin small laser power variation

δnc small nc variation due to δPin

δωc extra cavity shift variation due to δnc

δ∆ small detuning variation δ∆ = δωc for fixed laser wavelength

Γ temperature relaxation rate

Γ2 measurement induced extra relaxation rate

Γtot total measured relaxation rate Γtot = Γ + Γ2

The extra relaxation rate Γ2 reflects the fact that the laser
amplitude-modulation measurement method enters the com-
plicated dynamics of the system itself, leading to an effective
relaxation rate in addition to the actual relaxation rate Γ. We
define functions g and h to represent the dependency of Γ2 on
∆̄ and n̄c. We point out that ∆̄ and n̄c can be independently
controlled by preparing the steady state with different laser
frequencies ωl and powers Pin.

When the input laser power has a small variation δPin =
α cos(ωt), by assuming δ∆ = β cos(ωt + φ) and plugging into
eq. S12, we get the amplitude response of δ∆ to δPin to be∣∣∣∣ β

α

∣∣∣∣ ∝
1√

ω2 + (Γ + Γ2)2
. (S14)

As a result, the total “relaxation rate” Γtot = Γ + Γ2 can be
measured from the low-frequency amplitude response of δ∆.
With the measurement of Γtot and independent control over ∆̄
and n̄c, we are allowed to probe the structure of Γ2 and thus the
unknown function f .

Proceeding to the determination of f , we assume a poly-
nomial form f (n) = a1n + a2n2 + O(n3), where higher order
terms are assumed to be small based on the steady-state cavity
shift measurements. With this assumption, h(n) = n f ′(n) =
a1n + 2a2n2, and

Γtot = (1, g(∆̄)n̄c, 2g(∆̄)n̄2
c) · (Γ, a1, a2)

T = M · b. (S15)

By carrying out multiple measurements of Γtot with different
M, the thermal relaxation rate Γ and coefficients a1 and a2 can
be determined by solving a linear regression problem. Once
Γ, a1 and a2 are obtained, the steady-state cavity shift is ∆ωc =
α1n̄c + α2n̄2

c = a1n̄c/Γ + a2n̄2
c /Γ.

We now show that the response of δ∆ can be directly mea-
sured by the same coherent spectroscopy setup at low modula-
tion frequencies. When there is no slow thermal-induced cavity
wavelength shift, the optical response is given by

r(ω � ∆) ≈ 1− κe

i(∆−ω) + κ/2
. (S16)

When the slow cavity wavelength shift is considered, ∆ is re-
placed by ∆̄ + δ∆(ω), where δ∆(ω) is the frequency-domain
response of the slow thermal-induced wavelength shift. For
small and low-frequency intensity modulation, we assume
ω � δ∆� ∆, and the response can be simplified as

r(ω � ∆) ≈ 1− κe

i(∆ + δ∆(ω)) + κ/2
(S17)

≈ 1− κe

i∆ + κ/2
+

κe

i∆ + κ/2
·

iδ∆(ω)

i∆ + κ/2
.(S18)

The resulting intensity response is

|r(ω � ∆)|2 = A + B · δ∆(ω) + O
(
(

δ∆
∆

)2
)

, (S19)

where A and B are two real-valued functions of ∆, κ and κe. The
exact forms of A and B are involving but not important since
they are approximately independent of frequency for ω � ∆.
As a result, for low frequency intensity modulation, the only
frequency-dependent intensity response is from the variation of
thermal-induced cavity shift δ∆ = δωc.

We measured the intensity response |r(ω � ∆)|2 for fre-
quency range 100 kHz ∼ 5 MHz. The amplitude of the re-
sponse is fitted to a Lorentzian centered at frequency f = 0. The
linewidth of this Lorentzian corresponds to the total relaxation
rate Γtot. A typical low frequency response is shown in fig. S6(a)
with the Lorentzian fit (red). In this way we extracted Γtot under
different laser powers and wavelengths. The steady-state cavity-
laser detuning ∆̄ is measured at the same time by an optical side-
band sweep across the cavity. With measured Γtot, ∆̄ and n̄c, the
linear regression problem eq. S15 is solved. We obtain the true
thermal relaxation rate Γ = 150 kHz, linear thermal-induced
cavity shift coefficient α1 = a1/Γ ≈ −7.1× 104 Hz/photon and
quadratic thermal-induced cavity shift coefficient α2 = a2/Γ ≈
−1.5 Hz/(photon)2.

The thermal relaxation rate Γ quantitatively agrees with the
thermal-optical response time scale of ∼ 10 µs reported in
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Fig. S6. Measurement of thermal relaxation rate. (a) Example
of low frequency intensity modulation response of the OMC
system. Blue: data. Red: Lorentzian fit. (b) Measured total
relaxation rate versus measurement induced extra relaxation
rate (orange). The black dashed line shows the actual thermal
relaxation rate of the OMC. The blue line is a guide for the eye
and has a slope of 1.

Ref. [S5] and is slightly faster due to smaller device volume.
We note that for nc & 5× 104, the thermal-optical shift starts to
be dominated by the quadratic contribution, which agrees with
the steady-state wavelength shift measurement in the last sec-
tion. We note that the α2 obtained here is smaller than the value
from steady-state wavelength shift measurement by a factor ∼ 4.

We further calculated Γ2 with a1 and a2 from the linear regres-
sion and nc from the measurements. We show in fig. S6(b) the
measured Γtot versus calculated Γ2 (orange dots). The horizon-
tal black dashed line corresponds to the constant Γ. A blue line
starting at (0, Γ) with slope equals to one is plotted for guide of
the eye. It’s clear that good agreement is obtained between the
linear regression results and the equation Γtot = Γ + Γ2, under a
large variation of both laser powers and cavity-laser detunings.
To show the reliability of the linear regression results, we manu-
ally increase the obtained value of a1 (a2) by 50% and plot the
modified Γ2 in fig. S6(b) as small blue (red) dots for comparison.
Deviation from Γtot = Γ + Γ2 can be clearly observed.

3. MEASUREMENT OF OPTICAL LINEWIDTH WITH DIF-
FERENT INTRACAVITY PHOTON NUMBERS

In sec. 2A we observed the minimal transmission T0 increased
for high laser powers. We further deduced the minimal cavity-
laser detunings before the optical mode jumped back to the blue
side of the laser based on the minimal transmission measure-
ments. However, a change in the cavity intrinsic linewidth
κi could also change the transmission dip, where T0|∆=0 =
|(κ/2− κe)/(κ/2)|2 = |(κi − κe)/(κi + κe)|2. To track any con-
siderable change in the cavity intrinsic linewidth, we fit the
probe response from the coherent spectroscopy with different
pump laser powers and different cavity-laser detunings. This
two-tone spectroscopy effectively gives us the linear response of
the cavity at different pump powers and helps us determine ∆,
κe, and κi, as a function of laser power and detuning.

Fig. S7(a) shows one typical phase response of the probe with
a high pump laser power Pin = 0.21 mW and a small cavity-
laser detuning ∆ ∼ −κ. By fitting the phase response (red), we
extract the total optical linewidth κ. Measurements of κ versus
intracavity photon numbers nc with various pump powers and
detunings are plotted in fig. S7(b). Different colors correspond
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Fig. S7. Measurement of optical linewidth κ with different
intracavity photon numbers nc. (a) A typical phase response
of the probe with a high pump power Pin ∼ 0.2 mW and a
near-cavity detuning ∆ ∼ κ. The red line shows the fit result.
(b) Extracted total optical linewidth κ versus different intra-
cavity photon numbers nc under different pump powers and
detunings. Different colors correspond to different pump laser
powers.

to different pump laser powers ranging from 96 µW to 0.21 mW.
We obtained κ/2π ≈ 0.7 GHz with relative standard deviation∼
9% for all measurements with different pump powers. A linear
increase in total linewidth for increasing nc can be observed and
shows different slopes for different pump powers. We note that
in general the optical linewidth varies by less than 15% for nc
varying more than two orders of magnitude.

4. COUPLING AND CONVERSION BETWEEN MI-
CROWAVE, MECHANICS AND OPTICS

A. Input-output formalism of a optomechanical crystal cou-
pling to a microwave resonator or a microwave channel

Consider a system with an OMC coupling to a microwave res-
onator c with coupling strength gµ. We start by writing down the
frequency-domain Heisenberg-Langevin equations of motion in
a rotating frame at the laser frequency for ∆ ∼ ωm:

−iωa(ω) = −(i∆ +
κ

2
)a− iGb−

√
κeain (S20)

−iωb(ω) = −(iωm +
γ

2
)b− iGa− igµc−√γebin(S21)

−iωc(ω) = −(iωµ +
κµ

2
)c− igµb−√κµ,ecin (S22)

We assume that every mode is coupled to a single external chan-
nel respectively. The counter-rotating terms have been omitted
for simplicity. We introduce short-hands

Aa = i(∆−ω) + κ/2 (S23)

Ab = i(ωm −ω) + γ/2 (S24)

Ac = i(ωµ −ω) + κµ/2 (S25)

ηab = −iG/Aa (S26)

ηba = −iG/Ab (S27)

ηbc = −ig/Ab (S28)

ηcb = −ig/Ac (S29)

ηijk = ηijηjk (S30)
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where i, j, k run through a, b, c. With them the solution can be
expressed as

a

b

c

 =
1

1− ηaba − ηbcb


1− ηbcb ηab ηabc

ηba 1 ηbc

ηcba ηcb 1− ηaba



−√κe ain

Aa
−√γebin

Ab
−√κµ,ecin

Ac


(S31)

From eq. S31, we can directly read the electro-optic conver-
sion S parameters when only input cin or ain presents:

Sac ≡ aout

cin
=

√
κea

cin
(S32)

=
√

κe
ηabc

1− ηaba − ηbcb

−√κµ,e

Ac
(S33)

=
√

κe
1

Aa

Ggµ

Ab + G2/Aa + g2
µ/Ac

1
Ac

√
κµ,e (S34)

= Sca ≡
cout

ain
(S35)

At perfectly matched frequencies ω = ∆ = ωm = ωµ, we have
the conversion efficiency

η ≡ |Sac|2 = |Sca|2 (S36)

= κe
4
κ2

4G2g2
µ/γ2

(1 + 4G2/κγ + 4g2
µ/κµγ)2

4
κ2

µ
κµ,e (S37)

= ηext,aηext,c
4CabCbc

(1 + Cab + Cbc)2 (S38)

where ηext,a = κe/κ and ηext,c = κµ,e/κµ are defined as the
external efficiencies. Cab (Cbc) is the cooperativity between
the mechanical mode and the optical (microwave) mode. The
maximal conversion efficiency η = ηext,aηext,c is achieved for
Cab = Cbc � 1.

We proceed to consider the simplified case where the me-
chanical mode is directly coupled to a microwave channel. The
external decay rate γe now represents the coupling between the
microwave channel and the mechanical mode. The equations of
motion read

−iωa(ω) = −(i∆ +
κ

2
)a− iGb−

√
κeain (S39)

−iωb(ω) = −(iωm +
γ

2
)b− iGa−√γecin (S40)

and the simplified version of eq. S31 isa

b

 =
1

1− ηaba

 1 ηab

ηba 1

−√κe ain
Aa

−√γecin
Ab

 . (S41)

Similarly, the electro-optic S parameter is

Sac =
√

κe
ηab

1− ηaba

−√γe

Ab
(S42)

=
√

κe
1

Aa

iG
Ab + G2/Aa

√
γe (S43)

The resulting conversion efficiency at perfectly-matched fre-
quency ω = ∆ = ωm is

η = κe
4
κ2

4G2/γ2

(1 + 4G2/κγ)2 γe (S44)

= ηext, aηext, b
4Cab

(1 + Cab)2 (S45)

where ηext, b = γe/γ. The maximum of conversion efficiency
occurs at the matching condition Cab = 1, where similarly η =
ηext, aηext, b.

B. Measurement of coupling between the mechanical res-
onator and a microwave channel

Our OMC can be coupled to a microwave channel via the piezo-
electric interaction. We evaporated electrode on both ends of
the nanobeam and connected them to a transmission line with
impedance Z0 = 50 Ω. The electric field generated by the elec-
trode is parallel to the nanobeam. The same configuration can
also be adopted for coupling the mechanical resonator to mi-
crowave circuits.

From the last section, with ∆ = ωm, the coherent mechanical
field amplitude is

β =
−√γecin

i(ωm −ωµ) + γtot/2
, (S46)

where cin is the input microwave amplitude with a unit of
1/
√

Hz, γtot = γi + γe + γOM is the total mechanical linewidth
and ωµ ≈ ωm is the microwave signal frequency. The resulting
coherent phonon number in the mechanical mode is

ncoh = |β|2 =
γe Ṅµ

(ωµ −ωm)2 + (γtot/2)2 , (S47)

where Ṅµ = |cin|2 = ηlossPµ/(h̄ωµ) is the input microwave
photon flux, Pµ is the output power of the VNA and ηloss ≈ 58%
accounts for external RF cable loss. We tune ωµ = ωm and
measure the transduced optical sideband power spectral density
of both the coherent phonons and thermal phonons using the
RSA. The microwave-to-mechanics coupling rate is given by

γe =
ncohγ2

tot
4Ṅµ

. (S48)
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Fig. S8. Microwave to mechanics conversion. (a) Measured
power spectral density of thermal mechanical motion and co-
herent mechanical motion from the piezoelectric drive. Blue:
data, red: Lorentzian fit of the thermal motion peak. (b) Ex-
tracted phonon numbers from the power spectral density for
different VNA drive power.

Fig. S8(a) shows a measured optical sideband power spectral
density (PSD). The thermal mechanical motion give rise to the
broad Lorentzian peak and the coherent RF drive corresponds
to the sharp peak. We integrate the sideband RF power under
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both the thermal peak Ptherm and the coherent peak Pcoh inde-
pendently. The thermal occupacy of the mechanical mode is
calculated by ntherm = kBT/h̄ωm ≈ 3400 with T = 295 K. The
optical and electrical gain of the whole readout chain is then
determined by G = 〈Ptherm〉 /ntherm for a certain optical pump
power. We drive the OMC with different RF powers and extract
the thermal and coherent phonon numbers from the PSD in
fig. S8(b). The coherent phonon numbers rise linearly with the
increasing RF powers while the thermal phonon occupancies
stay near-constant. We obtained γe/2π = 8.8± 0.56 mHz.

C. Estimating coupling between the LN OMC and a microwave
resonator or a superconducting qubit

In this section we estimate the coupling of the mechanical mode
to a microwave resonator or a superconducting qubit based on
our measurement of γe in the last section.

The mechanical resonator is commonly modeled as a parallel
LC resonator [S6]. To take into account the non-zero energy
decay rate γ, a resistor is added in parallel such that γ = 1/(RC).
The mechanical resonator can be coupled to an external 50 Ω
transmission line through coupling capacitance Cg, as shown in
fig. S9(a). The external coupling introduces a frequency shift and
an additional decay rate from an effective conductance 1/Ze =
ω2

mC2
gZ0 [S7]. From this equivalence, we obtain a relationship

between the coupling capacitance Cg and the coupling induced
decay rate γe = ω2

mC2
gZ0/C.

We show in fig. S9(e) a mechanical resonator coupling to a
microwave resonator or a superconducting qubit. The coupling
rate is given by [S8]

g '
√

ωmω2 ·
Cg

2
√
(C + Cg)(C2 + Cg)

(S49)

≈
√

ωmω2 ·
Cg

2
√

CC2
, (S50)

where we’ve made the assumption that Cg � C1, C2. To simplify
the result, we assume that the two modes are perfectly matched
with ω2 = ωm, and the microwave resonator has a characteristic
impedance Zc =

√
L2/C2. As a result,

g2 =
ω2

mC2
g

C
·

1
4C2

=
γe

Z0
·

ωmZc

4
, (S51)

where we made the substitution 1/C2 = ω2Zc.
In conclusion, the coupling rate between a mechanical res-

onator and a microwave channel γe and the coupling rate be-
tween a mechanical resonator and a microwave resonator g are
related by g =

√
γeωm

√
Zc/Z0/2.

5. EXTRACTING PUMP DETUNINGS FROM ON-CHIP
ELECTRO-OPTIC MODULATION

We start with the electro-optic interaction Hamiltonian. The
perturbation on the optical mode frequency from a voltage V
across the electodes are modeled by

HEO = h̄
dω

dV
Vâ† â (S52)

= −ih̄
√

κe,µ â† â(cin − c†
in). (S53)

Where we rewrite the voltage in terms of input microwave ampli-
tude cin and choose a specific phase of cin for later convenience.
After linearization and rotating wave approximation:

HEO = −ih̄
√

κe,µ(α0 â†cin − α∗0 âc†
in). (S54)

where α0 = −√κeαin/(i∆+ κ/2) is the optical intracavity pump
amplitude and αin is the pump input photon amplitude. Equa-
tion of motion for the optical sideband amplitude is

− iωa(ω) = −(i∆ +
κ

2
)a−√κe,µα0cin (S55)

from which we could solve the sideband amplitude and calculate
the output optical field as

αout =

[
1− κe

i∆ + κ
2

(
1−

√
κe,µ

i(∆−ωµ) +
κ
2

cine−iωµt
)]

αin

=
(

r(∆) + sEO(ωµ, ∆)cine−iωµt
)

αin, (S56)

where
r(∆) = 1− κe

i∆ + κ/2
, (S57)

sEO(ω, ∆) =
κe

i∆ + κ/2

√
κe,µ

i(∆−ω) + κ
2

. (S58)

The electronic signal from the high-speed photo-detector is

VHS = G|αout|2 = G|αin|2
(
|r(∆)|2+

r∗(∆)sEO(ωµ, ∆)cine−iωµt + h.c. + O(c2
in)
)

(S59)

where G denotes the total detection gain. As a result, the VNA
directly measures S21(ω, ∆) ∝ G|αin|2r∗(∆)sEO(ω, ∆)Sext(ω)
where we further include the external response of the cables
and wirebonds in Sext(ω).

For the coherent spectroscopy, the external response and
the detection gain can be removed by dividing the response
with a background taken with far-detuned pump laser [S3, S9].
The electro-optic (EO) sideband is generated by the EOM and
doesn’t depend on the cavity-laser detuning. However, for the
on-chip EO modulation, the intracavity photon numbers are
much smaller for far-detuned pump laser, resulting in a much
weaker EO sideband and a very low SNR. To eliminate the detec-
tion gain G and the external response, we take the ratio between
two S21 measurements with different near-cavity detunings ∆1
and ∆2 where |∆1 − ∆2| & κ. The gain and external response is
identical and cancels, leaving only the ratio of the on-chip EO
response. We denote the ratio of the S21 as

S∆2/∆1
(ω) =

r∗(∆2)sEO(ω, ∆2)

r∗(∆1)sEO(ω, ∆1)
. (S60)

By fitting the measured S21 ratio with different detunings and
identical pump laser power, we extract both detunings ∆1 and
∆2.

In fig. S10 we show a typical measured S∆2/∆1
(blue) and the

fitting results using eq. S60 (red). The external responses are
perfectly removed, allowing us to extract the detunings of the
pump laser. We point out that with the piezoelectric drive off,
the pump detunings could also be extracted using the external
EOM sideband sweep as used in the coherent spectroscopy.
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6. ROTATED PHOTOELASTIC TENSOR COMPONENTS

The original photoelastic tensor components are given by [S10]

p =



p11 p12 p13 p14 0 0

p12 p11 p13 −p14 0 0

p31 p31 p33 0 0 0

p41 −p41 0 p44 0 0

0 0 0 0 p44 p41

0 0 0 0 p14 (p11 − p12)/2


. (S61)

Using the rotation matrix and MATHEMATICA [S11], we obtain the rotated photoelastic components in the contracted index notation
for X-cut LN as

p′LNX =



p′11 p′12 p′13 0 0 p′16

p′21 p′22 p′23 0 0 p′26

p′31 p′32 p′33 0 0 p′36

0 0 0 p′44 p′45 0

0 0 0 p′54 p′55 0

p′61 p′62 p′63 0 0 p′66


, (S62)

with

p′11 = p11 sin4(φ) + p44 sin2(2φ) + p33 cos4(φ) + p13 sin2(φ) cos2(φ) + p31 sin2(φ) cos2(φ)

−2p14 sin3(φ) cos(φ)− 2p41 sin3(φ) cos(φ), (S63)

p′12 = p13 sin4(φ)− p44 sin2(2φ) + p31 cos4(φ)− 2p41 sin(φ) cos3(φ) + p11 sin2(φ) cos2(φ)

+p33 sin2(φ) cos2(φ) + 2p14 sin3(φ) cos(φ) (S64)

p′13 = p12 sin2(φ) + p41 sin(2φ) + p31 cos2(φ) (S65)

p′16 = sin(φ)
(
−p31 cos3(φ) + p33 cos3(φ)− 2p44 cos(2φ) cos(φ) + 2p41 sin(φ) cos2(φ)− p11 sin2(φ) cos(φ)

+p13 sin2(φ) cos(φ) + p14 sin(φ) cos(2φ)
)

(S66)

p′21 = p31 sin4(φ)− p44 sin2(2φ) + p13 cos4(φ)− 2p14 sin(φ) cos3(φ) + p11 sin2(φ) cos2(φ)

+p33 sin2(φ) cos2(φ) + 2p41 sin3(φ) cos(φ) (S67)

p′22 = p33 sin4(φ) + p44 sin2(2φ) + p11 cos4(φ) + 2p14 sin(φ) cos3(φ) + 2p41 sin(φ) cos3(φ)

+p13 sin2(φ) cos2(φ) + p31 sin2(φ) cos2(φ) (S68)

p′23 = p12 cos2(φ) + sin(φ) (p31 sin(φ)− 2p41 cos(φ)) (S69)

p′26 = cos(φ)
(
−p31 sin3(φ) + p33 sin3(φ) + p14 cos(φ) cos(2φ)− p11 sin(φ) cos2(φ) + p13 sin(φ) cos2(φ)

−2p41 sin2(φ) cos(φ) + 2p44 sin(φ) cos(2φ)
)

(S70)

p′31 = p12 sin2(φ) + p14 sin(2φ) + p13 cos2(φ) (S71)

p′32 = p12 cos2(φ) + sin(φ) (p13 sin(φ)− 2p14 cos(φ)) (S72)

p′33 = p11 (S73)

p′36 =
1
2
(p12(− sin(2φ)) + p13 sin(2φ)− 2p14 cos(2φ)) (S74)

p′44 =
1
2
(p11 − p12) cos2(φ)− p14 sin(φ) cos(φ) + sin(φ) (p44 sin(φ)− p41 cos(φ)) (S75)

p′45 = sin(φ) (p41 sin(φ) + p44 cos(φ))− cos(φ)
(

1
2
(p11 − p12) sin(φ) + p14 cos(φ)

)
(S76)

p′54 = sin(φ)
(

p14 sin(φ)− 1
2
(p11 − p12) cos(φ)

)
+ cos(φ) (p44 sin(φ)− p41 cos(φ)) (S77)

p′55 = sin(φ)
(

1
2
(p11 − p12) sin(φ) + p14 cos(φ)

)
+ cos(φ) (p41 sin(φ) + p44 cos(φ)) (S78)
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p′61 = sin(φ)
(
−p41 sin3(φ) + p44 sin(φ) sin(2φ)− p13 cos3(φ) + p33 cos3(φ)− 2p44 cos3(φ) + 2p14 sin(φ) cos2(φ)

+p41 sin(φ) cos2(φ)− p11 sin2(φ) cos(φ) + p31 sin2(φ) cos(φ)
)

(S79)

p′62 = cos(φ)
(

p33 sin3(φ) + p31 sin(φ) cos2(φ) + cos2(φ) (2p44 sin(φ) + p41 cos(φ))

− sin(φ)
(

p11 cos2(φ) + sin(φ) (p13 sin(φ) + 2p44 sin(φ) + 2p14 cos(φ) + p41 cos(φ))
))

(S80)

p′63 =
1
2
(p12(− sin(2φ)) + p31 sin(2φ)− 2p41 cos(2φ)) (S81)

p′66 =
1
8

(
2p11 sin2(2φ)− 2p14 sin(4φ)− 2p41 sin(4φ) + p13(cos(4φ)− 1) + p31 cos(4φ)

−p33 cos(4φ) + 4p44 cos(4φ)− p31 + p33 + 4p44) (S82)

For Y-cut LN, the rotated photoelastic tensor components are given by

p′LNY =



p′11 p′12 p′13 p′14 p′15 p′16

p′21 p′22 p′23 p′24 p′25 p′26

p′31 p′32 p′33 p′34 p′35 p′36

p′41 p′42 p′43 p′44 p′45 p′46

p′51 p′52 p′53 p′54 p′55 p′56

p′61 p′62 p′63 p′64 p′65 p′66


, (S83)

where

p′11 = p11 sin4(φ) + p44 sin2(2φ) + p33 cos4(φ) + p13 sin2(φ) cos2(φ) + p31 sin2(φ) cos2(φ) (S84)

p′12 = p13 sin4(φ)− p44 sin2(2φ) + p31 cos4(φ) + p11 sin2(φ) cos2(φ) + p33 sin2(φ) cos2(φ) (S85)

p′13 = p12 sin2(φ) + p31 cos2(φ) (S86)

p′14 = p14 sin3(φ)− 2p41 sin(φ) cos2(φ) (S87)

p′15 = (p14 + 2p41) sin2(φ) cos(φ) (S88)

p′16 = sin(φ) cos(φ)
(
−p11 sin2(φ) + p13 sin2(φ)− p31 cos2(φ) + p33 cos2(φ)− 2p44 cos(2φ)

)
(S89)

p′21 = p31 sin4(φ)− p44 sin2(2φ) + p13 cos4(φ) + p11 sin2(φ) cos2(φ) + p33 sin2(φ) cos2(φ) (S90)

p′22 = p11 cos4(φ) + sin2(φ)
(

p33 sin2(φ) + p13 cos2(φ) + p31 cos2(φ) + 4p44 cos2(φ)
)

(S91)

p′23 = p31 sin2(φ) + p12 cos2(φ) (S92)

p′24 = (p14 + 2p41) sin(φ) cos2(φ) (S93)

p′25 = p14 cos3(φ)− 2p41 sin2(φ) cos(φ) (S94)

p′26 = sin(φ) cos(φ)
(
−p31 sin2(φ) + p33 sin2(φ)− p11 cos2(φ) + p13 cos2(φ) + 2p44 cos(2φ)

)
(S95)

p′31 = p12 sin2(φ) + p13 cos2(φ) (S96)

p′32 = p13 sin2(φ) + p12 cos2(φ) (S97)

p′33 = p11 (S98)

p′34 = p14(− sin(φ)) (S99)

p′35 = p14(− cos(φ)) (S100)

p′36 = (p13 − p12) sin(φ) cos(φ) (S101)

p′41 = p41 sin3(φ)− 2p14 sin(φ) cos2(φ) (S102)

p′42 = (2p14 + p41) sin(φ) cos2(φ) (S103)

p′43 = p41(− sin(φ)) (S104)

p′44 = p44 sin2(φ) +
1
2
(p11 − p12) cos2(φ) (S105)

p′45 =
1
2
(−p11 + p12 + 2p44) sin(φ) cos(φ) (S106)

p′46 = cos(φ)
(

p14 cos(2φ)− p41 sin2(φ)
)

(S107)
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p′51 = (2p14 + p41) sin2(φ) cos(φ) (S108)

p′52 = p41 cos3(φ)− 2p14 sin2(φ) cos(φ) (S109)

p′53 = p41(− cos(φ)) (S110)

p′54 =
1
2
(−p11 + p12 + 2p44) sin(φ) cos(φ) (S111)

p′55 =
1
2
(p11 − p12) sin2(φ) + p44 cos2(φ) (S112)

p′56 = − sin(φ)
(

p41 cos2(φ) + p14 cos(2φ)
)

(S113)

p′61 = sin(φ) cos(φ)
(
−p11 sin2(φ) + p31 sin2(φ) + 2p44 sin2(φ)− p13 cos2(φ) + (p33 − 2p44) cos2(φ)

)
(S114)

p′62 = cos(φ)
(

p33 sin3(φ) + p31 sin(φ) cos2(φ) + p44 sin(2φ) cos(φ)
)

− sin(φ)
(

p11 cos3(φ) + (p13 + 2p44) sin2(φ) cos(φ)
)

(S115)

p′63 = (p31 − p12) sin(φ) cos(φ) (S116)

p′64 = cos(φ)
(

p41 cos(2φ)− p14 sin2(φ)
)

(S117)

p′65 = − sin(φ)
(

p14 cos2(φ) + p41 cos(2φ)
)

(S118)

p′66 = cos2(φ)
(
(p33 − p31) sin2(φ) + p44 cos(2φ)

)
− sin2(φ)

(
(p13 − p11) cos2(φ) + p44 cos(2φ)

)
(S119)
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