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This document provides supplementary information to “Nonlinear optics with full three-
dimensional illumination,” https://doi.org/10.1364/OPTICA.6.000878. It gives detailed 
arguments for excluding four-wave mixing as the nonlinear process underlying the generation 
of frequency-tripled photons in our experiments. Furthermore, the methods and concepts used 
in the simulations are discussed.

1. INFLUENCE OF FOUR-WAVE MIXING AND KERR EF-
FECT

It is well known that third-harmonic generation (THG) by four-
wave mixing (FWM) with light focused such that the beam waist
lies in the middle of the interaction region is possible only if
the phase mismatch, ∆k = 3k1 − k3, is positive [1]. Here, k1 is
the wave number of the fundamental beam and k3 is the wave
number of the TH beam. In normal dispersive media (such as
argon driven by 1064 nm light), with increasing frequency the

refractive index increases and ∆k = 6π
λ1
(n(0)

1 − n(0)
3 ) is negative,

where λ1 is the wavelength of the fundamental beam and n(0)
1

and n(0)
3 are the linear refractive indices for the fundamental

beam and TH beam, respectively. Thus, THG by FWM is not
possible in the normal dispersive media.

If THG is influenced by the Kerr effect, the phase mismatch
will become a function of intensity and nonlinear refractive
indices as

∆kKerr =
6π

λ1
[(n(0)

1 − n(0)
3 ) + (n(2)

1 − n(2)
3 )I] , (S1)

with n(2)
1 and n(2)

3 denoting the nonlinear refractive indices for
fundamental and TH beam. I is the intensity of the fundamen-
tal beam. The nonlinear refractive index for a single intense
fundamental beam with angular frequency ω is given by [1]

n(2)
1 =

3

4(n(0)
1 )2ε0c0

χ(3)(ω = ω + ω−ω) , (S2)

where ε0 is the vacuum permittivity, c0 is the speed of light in
vacuum and χ(3) is the third-order nonlinear susceptibility. The
nonlinear refractive index for a weak frequency-tripled beam
with angular frequency ω′ = 3ω in a medium influenced by an
intense fundamental beam with angular frequency ω is [1]

n(2)
3 =

3

2(n(0)
3 )2ε0c0

χ(3)(ω′ = ω′ + ω−ω) . (S3)

Since the detuning of the pump as well as of the TH
wave with respect to the lowest excited state of argon has the
same sign, χ(3)(ω = ω + ω−ω) and χ(3)(ω′ = ω′ + ω−ω) have
the same sign, too. Obviously, then the same holds true for

n(2)
1 and n(2)

3 . From Eq. (S2) and Eq. (S3) we conclude that

n(2)
1 − n(2)

3 =

3
4ε0c0

(
χ(3)(ω = ω + ω−ω)

(n(0)
1 )2

− 2χ(3)(ω′ = ω′ + ω−ω)

(n(0)
3 )2

).
(S4)

According to Eq. (S1), to get a positive ∆kKerr and hence the
possibility of THG for focused light, two conditions should be
fulfilled. The first condition is

n(2)
1 − n(2)

3 > 0 (S5)

and the second condition reads

|(n(2)
1 − n(2)

3 )I| > |(n(0)
1 − n(0)

3 )| . (S6)

We cannot check the first condition quantitatively, because, to
the best of our knowledge, the value of χ(3)(ω′ = ω′ + ω−ω)
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Fig. S1. Simulated intensity distributions in the focal region
of a PM when focusing a radially polarized mode. The in-
tensity of fields components polarized along the optical axis
(z-axis) is shown in (a), the intensity of the field polarized in
x-direction is depicted in (b). All intensity values are scaled by
the maximum intensity in the focus. Both intensity distribu-
tions are symmetric with respect to the z-axis and the x-axis,
respectively. The coordinates are given in units of the pump
wavelength λ. The geometry of the PM is the same as for the
one used in the experiment in the main text. Aberrations are
not taken into account.

for a strong beam at 1064 nm and a weak beam at 355 nm has
not been reported. If χ(3)(ω = ω + ω−ω) is sufficiently smaller
than 2χ(3)(ω′ = ω′ + ω−ω) such that the first condition is not ful-
filled, then THG by FWM will not be possible. However, assum-
ing that χ(3)(ω = ω + ω−ω) is greater than 2χ(3)(ω′ = ω′ + ω−ω)

and knowing that n(0)
3 > n(0)

1 , the first condition given by Eq. S5
is fulfilled. With this assumption, we check the second condition,

setting n(2)
1 − n(2)

3
∼= n(2)

1 which is the case at which the intensity
I needed to achieve the condition given by Eq. S6 is minimum.

Considering the linear refractive indices of argon at 1064 nm

and 355 nm [2], we calculate n(0)
1 − n(0)

3
∼= −2.6× 10−5. For the

fundamental beam at 1064 nm, the third-order nonlinear suscep-
tibility of argon gas is χ(3) = 7.8× 10−27 (m2/V2)/bar [3]. The
maximum intensity which we reach just before the breakdown
threshold in argon gas is about 3.5× 1013 W/cm2. Our experi-
mental measurements are always done below the breakdown
threshold. Setting I to the intensity at the breakdown threshold
and using Eq. (S2) to calculate the nonlinear refractive index, we

conclude that |(n(2)
1 − n(2)

3 )I| ∼= |n(2)
1 I| = 7.7× 10−7 which is

more than an order of magnitude smaller than |(n(0)
1 − n(0)

3 )|.
The difference would be even more pronounced when n(2)

1 ≈
n(2)

3 , since then |(n(2)
1 − n(2)

3 )I|would be even smaller. Therefore,
even assuming most favorable conditions Eq. S6 cannot be ful-
filled. Thus we conclude that the generation of frequency-tripled
photons in our experiment is not the result of THG by FWM,
even when phase matching is influenced by the Kerr effect.

2. THEORETICAL CONSIDERATIONS

In what follows, we model the generation of frequency-tripled
photons in the focus of a parabolic mirror.

The electric field of the incident focused beam induces a non-
linear polarization in the focal region of the parabolic mirror
(PM). The contribution of the nonlinear polarization relevant
for generating frequency-tripled photons is P3ω . In the main
text and above we have argued that six-wave mixing (SWM)
is the responsible process for the generation of photons with

frequency 3ω. In general, the 5th-order susceptibility is a tensor.
This provides the possibility for the mixing of field components
with orthogonal states of polarization. In order for such a mixing
to occur, correspondingly polarized fields have to be present [4].
As is evident from Fig. S1, field components with different states
of polarization do occur in the focal region when focusing a
radially polarized mode with a PM. The dominant field polar-
ization is the one along the optical axis of the PM. However,
the intensity of pump fields with orthogonal polarization is
smaller by two orders of magnitude. Hence, the number of
photons generated by cross coupling of longitudinal and trans-
verse field components must be such low as well. In addition,
this effect must be even more pronounced, since the dominant
longitudinal components are localized close to the optical axis
(confined within half a wavelength distance from the optical
axis), whereas the transverse components have their maximum
intensity off the optical axis (in a region where the longitudinal
field is strongly suppressed), c.f. Fig. S1. Thus, any nonlinear
signal polarized orthogonal to the optical axis can be estimated
to be at maximum of order 10−3 of the maximum longitudinally
polarized signal. The same reasoning applies for the generation
of longitudinally polarized tripled-frequency photons from or-
thogonally polarized pump fields. We therefore approximate the
5th-order susceptibility as a scalar χ(5) and write the nonlinear
polarization as

P3ω = P(5)

= 5ε0χ(5)(3ω = ω + ω + ω + ω−ω)E4(r)E∗(r),
(S7)

where the factor 5 is the degeneracy factor and E(r) is the electric
field of the focused fundamental beam. r = 0 is the position of
the geometrical focus of the PM.

Because P3ω is a dipole-moment density, the dipole moment
oscillating at 3ω that is induced in a volume element Vi is given
by

µ3ω,i =
∫

Vi

P3ωd3r . (S8)

In our simulations we associate Vi with the volume of a unit
cell of the simulation grid. The light emitted by each dipole is
collected by the parabolic mirror and propagates towards the
detector. The detected signal is given by the interference of
all these fields, with the amplitude of the field emerging from
Vi being proportional to µ3ω,i. We anticipate this interference
process by introducing an effective dipole moment

M3ω = ∑
i

γi · µ3ω,i (S9)

where the γi are real weighting factors that account for the pro-
jection onto a detection mode (see Sec. 3 for a discussion on the
influence of the spatial separation of the dipole moments µ3ω,i
onto the overall signal).

The total power that is radiated at frequency 3ω by the dipole
moment M3ω amounts to [5, Eq. 9.24]

W3ω =
(3ω)4

12πε0c3
0
|M3ω |2 . (S10)

The medium is excited with pulses of Gaussian envelope of
FWHM τ. Accounting for the observed 5th-order dependence
of the THG photons on excitation power, the duration of the
THG pulse is τ/

√
5. Therefore, the number of frequency-tripled

photons per pulse becomes

N3ω =
W3ωτ

3
√

5h̄ω
, (S11)
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Fig. S2. Simulated frequency-tripled photon number vs solid
angle used for focusing. The dotted line is for the case of using
our PM without correcting for its aberrations. The dash-dotted
line is for the case of employing a CM in our setup, which
compensates the aberrations of our PM up to a Strehl ratio
of 79%. The solid line is for the case of an ideal PM without
any aberrations. The dashed line denotes a curve ∝ Ω5 for
comparison. The absolute values of frequency tripled photons
per pulse were obtained by fitting the case ‘with CM’ to the
experimental data.

where 3h̄ω is the energy of a frequency-tripled photon. Combin-
ing Eqs. (S8) to (S11) we arrive at

N3ω =
225ε0ω3τχ(5)2

4
√

5πh̄c3
0

∣∣∣∣∣∑i
γi

∫
Vi

E4(r)E∗(r)d3r

∣∣∣∣∣
2

. (S12)

The complex electric field E(r) in the focal region of the PM
is calculated by using the Debye integral method [6]. Our nu-
merical implementation of this method is explained in detail
in Ref. [7]. By integrating over complex fields we explicitly
account for the spatial variation of the phase of P3ω . In our
calculations we take into account the measured aberrations of
our PM, the measured phase-front induced by the CM as well as
the field distribution of the radially polarized doughnut mode.
All aberrations are modeled as relative phases of the electric
field distribution incident onto the PM. The pulse energy and
duration are the same as in the experiment underlying Fig. 3 in
the main text.

For the nonlinear susceptibility χ(5) there is – to the best of
our knowledge – no value reported in literature that was ob-
tained in a comparable experimental setting, i.e. the generation
of the TH of 1064 nm light by SWM. Ref. [3] reports χ(5) for
generating the fifth harmonic of 1064 nm light, whereas some
χ(5) values have been determined for SWM processes involv-
ing (deep) ultraviolet light, see Ref. [8] and references therein.
Therefore, we here use χ(5) as a fit parameter with which we
quantitatively match the outcome of the simulations to the ex-
perimental results.

Fig. S2 shows the result of simulating the generation of
frequency-tripled photons as a function of the solid angle used
for focusing. We consider three cases, as shown in Fig S2.

In the first case, we model a PM without any aberrations, i.e.
at the diffraction limit. The number of photons at frequency 3ω
grows monotonically with increasing solid angle. This result can
intuitively be understood from the fact that the focal intensity
of the pump beam scales linearly with the solid angle Ω [9].
One would thus expect the conversion efficiency of an N-th

order process to scale with solid angle as ΩN . However, our
simulation results do not show this Ω5 dependence. We attribute
this different result to the complicated spatial distribution of
E(r) in the focal region: for increasing solid angle, the maximum
intensity of the pump field in the focal region grows with Ω.
However, the focal volume shrinks when increasing the solid
angle (see simulations in Fig. S3). Also the spatial distribution
of the phase of E(r) changes upon varying Ω. All these effects
result in the behavior observed in the simulation.

As a second case, we model the PM used in the experiments
without any aberration compensation, the number of generated
frequency-tripled photons is very low at each investigated solid
angle, cf. Fig. S2. The maximum of ∼ 0.5 photons per pulse
occurs at a solid angle of Ω = 0.57 · 8π/3. That is, the steady
increase of the photon number for increasing Ω is no longer
observed. The latter observation can be explained by the spatial
distribution of the aberrations over the surface of the PM. Similar
effects are also observed for other parabolic mirrors [10]. Such
aberrations appear to be typical for deep parabolic mirrors, and
seem to represent the current state of the art.

Finally, as a third case we calculate the number of frequency-
tripled photons for the case of compensating the aberrations of
the PM with a compensation mirror (CM) as described in the
main text. This case is used to fit the simulations to the experi-
mental results with χ(5) as the only fit parameter. The simulation
yields a steady increase of the photon number with increasing
solid angle. Despite some saturation behavior at solid angle
fractions beyond 90%, the results for the combination PM+CM
shows qualitative similarities with the diffraction-limited case.
However, the absolute photon numbers are considerably smaller
than in the diffraction limited case. This latter observation is
readily explained by the still non-optimum aberration compen-
sation, which is expressed through a Strehl ratio of 79%. In
the case of a nonlinear optical process as investigated here, the
influence of a non-unit Strehl ratio should exponentiate to the
order of the nonlinear process. For the largest solid angle used
for focusing and for a fifth-order process, the simulation results
approximately exhibit this behavior.

3. COLLECTING THIRD-HARMONIC SIGNALS FROM
SPATIALLY SEPARATED DIPOLES

In typical nonlinear optics experiments the light generated in
a wave-mixing process is collected from an extended spatial
region. This necessitates the account of the relative phases of the
electric fields generated at different positions when calculating
the total power that is generated in the nonlinear process. There
are two contributions to the relative phases. One stems from
the relative phase of the local pump field, which determines
the phase of the nonlinear polarization. This contribution is
directly included in our simulations, cf. Eq. S12. The second
contribution is determined by the optical path-length difference
(OPD) from the different source dipoles in the nonlinear medium
to the point of detection. We now discuss how to account for
this contribution in our particular scenario.

Whereas the OPD is readily defined in an experiment in
which the detection occurs only under a small solid angle, the
situation is more complicated when collecting light over the full
solid angle. For two sources separated by a distance d the OPD
to a point of observation lying on a circle with radius � d is
given by

OPD = d · cos ϑ (S13)
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Fig. S3. (a) Simulated focal volume of the fundamental beam focused by the PM (outer spheroid) and the effective volume in
which the frequency-tripled beam is generated through SWM (inner spheroid). Aberrations of the PM are corrected for by using
the CM. To obtain the respective volumes the FWHMs of the corresponding intensity distributions are determined. Both inten-
sity distributions are scaled to their respective maximum values. Bright color indicates high intensity. The effective volume of
frequency-tripled photon generation is determined from the fifth power of the intensity distribution of the fundamental beam. The
major axis of each spheroid equals the FWHM|| of the corresponding distribution along the axis of the PM and the minor axis is the
FWHM⊥ of the distribution in the focal plane perpendicular to the axis of the PM. (b) Focal volume vs. solid angle: The red circles
correspond to the focal volume of the fundamental beam focused by the PM. The blue squares correspond to the effective volume
for frequency-tripled generation. All values are normalized to λ3

1 where λ1 is the wavelength of the fundamental beam.

with ϑ the angle to some reference direction. Thus, there is
no unique OPD that is valid along all of the directions defined
by the wave vectors of the dipolar emission of two separated
sources. Moreover, the OPD is zero when averaging over ϑ.

However, when collecting light over the entire solid angle
with a deep PM as in this work, the position of the light source
determines the phase front of the mode that is reflected off the
parabolic surface. These phase fronts can be expressed in terms
of misalignment functionals, which in general have to be cal-
culated numerically by ray tracing [11]. For the experimental
scenario treated here, we can make some simplifying assump-
tions that lead to analytic expressions.

First, the focused pump field is predominantly polarized par-
allel to the optical axis of the PM. Thus the nonlinear polarization
and consequently all induced dipole moments oscillating at 3ω
are oriented along this direction. Since the extent of the focus is
on the order of a wavelength or even smaller, we assume that
the intensity distribution of the emission of all these dipoles is
the same as the one for a dipole located at the geometric focus of
the mirror. After collimation by the PM and ignoring an overall
amplitude factor this intensity distribution reads [12]

I(r) ∝
(r/ f )2

[(r/ f )2/4 + 1]4
(S14)

with f the PM focal length and r the distance of a point in the
aperture plane of the PM to the optical axis.

Second, the simulations of the focal intensity distribution of
the pump light (cf. Sec. 2) reveal that the electric field E(r) is
effectively concentrated in a narrow region along the optical axis
of the PM. Since we observe that the generation of frequency-
tripled photons is proportional to the fifth order of the pump
power, we examine the distribution of |E(r)|10. We find that
the half-width at half-maximum of this distribution in lateral
direction is about 0.1λ1 for using the full mirror. In the axial
direction the width is slightly larger. For somewhat smaller solid

angles, as was the case in our measurements, the focal field dis-
tribution elongates along the optical axis while the lateral extent
is practically constant. We therefore infer that the phase fronts
of the TH light collected by the PM are mainly influenced by the
axial position of the emitters and that phase front distortions
due to lateral displacements can be neglected. Identifying ϑ in
Eq. S13 with the emission angle of the dipole radiation pattern,
the optical path-length difference of the emission from a dipole
after collimation by the PM can be written as

OPDi(r) = zi
1− (r/2 f )2

1 + (r/2 f )2 , (S15)

where zi is the axial displacement of the induced dipole µ3ω,i
from the PM focus.

For calculating the interference of the fields emitted by all
dipoles µ3ω,i in the focal region, we project each field distribution
on a detection mode. We take the detection mode to be the
field distribution that is emitted by the largest dipole moment.
This dipole is located where the amplitude of the pump field
is maximum, the corresponding axial coordinate is zmax. Then,
the overlap of the emission from dipole µ3ω,i with the detection
mode reads

γi =

∫
I(r) · cos

(
6π
λ1
(zi − zmax)

1−(r/2 f )2

1+(r/2 f )2

)
rdr∫

I(r) rdr
, (S16)

with the integration performed over the entire aperture of the
PM. This is the factor γi employed in the calculation of the
number of frequency-tripled photons in Eq. S12 in the main
part.
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