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Fig. S1. Transmittance spectra numerically calculated through SCUFF for a plane wave incident at θ = 0◦, 50◦ on a square lattice
(a = 300 µm) of two planar gold rods per unit cell embedded in a uniform medium with n = 1.55, with two different rod separa-
tions: dx = a/2 (dashed curves) and dx = 2a/5 (solid curves), in the latter case, θ = 10◦ is also considered to further illustrate the
emergence of a Fano resonance. Gold rods are identical and have dimensions L1 = L2 = 200 µm and w1 = w2 = 40 µm.
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Fig. S2. (a) Scattering efficiencies (solid curves) numerically calculated through SCUFF for perfectly conducting planar dimer
rods (separated by d = 120 µm) with lengths L1 = 200 µm and: L2 = 125, 200 and 250 µm (widths satisfy w(µm) = 8000/L).
Corresponding efficiencies for single isolated rods with L = L2 are also included (dashed curves). Insets show the near-field maps
(magnetic field perpendicular to the dimer plane) for the dimer with L2 = 125µm at the two resonances. Significant interference
between rods is observed in the dimer spectra, which do not correspond to simply a linear combination of the isolated spectra of
each rod. Rather, rod interference leads to a stronger/weaker impact of the higher/lower frequency rod resonance (apart from their
opposite phases, not shown), as expected. (b) Real and imaginary parts of the polarizibilities of the single rods extracted from (a).
In order to avoid numerical problems related to unphysical absorption, we consider in our coupled dipole model that dipoles are

lossless so that the imaginary parts of the polarizabilities are fixed to =
[
1/α

(i)
y

]
= −k3/(6π) to fulfill the optical theorem, taking

for the real parts the values calculated numerically.
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1. COUPLED DETUNED-DIPOLE FORMULATION

First of all, let us define the scalar Green function, g(r− rn), resulting from the Helmholtz equation with a point source located at
r = rn:

∇2g + k2g = −δ(r− rn), (S1)

whose solution is

g(r− rn) =
eık|r−rn |

4πk|r− rn|
k. (S2)

The Weyl expansion of the scalar Green function is

g(r− rn) =
∫ ∞

−∞

∫ ∞

−∞

dQxdQy

4π2 eıQx(x−xn)eıQy(y−yn) ı
2q

eıq|z−zn |, q =
√

k2 −Q2
x −Q2

y. (S3)

The element yy of the (tensor) Green function, Gyy(r− rn), is

Gyy(r− rn) =

(
1 +

1
k2

∂2

∂y2

)
g(r− rn)

=
∫ ∞

−∞

∫ ∞

−∞

dQxQy

4π2

(
1−

Q2
y

k2

)
eıQx(x−xn)eıQy(y−yn) ı

2q
eıq|z−zn |. (S4)

This element will be needed below.
Next, let us consider a 2D periodic lattice of two detuned dipoles per unit cell in the xy plane. The lattice has a rectangular symmetry

with pitch a and b in the x and y-axis, respectively, while the separation between the dipoles in the unit cell is dx and dy along the x

and y-axis, respectively. The (parallel) dipoles are characterized by their polarizabilities along the y-axis, α
(1)
y and α

(2)
y , where (1) and

(2) account for each dipole in the unit cell. The array is excited by an external plane wave, ψ0, polarized along the y-axis and with
wavevector k = kz ẑ + kx x̂. The dipole positions (1) and (2) are

r(1)nm = (−dx/2 + na)x̂ + (−dy/2 + mb)ŷ, (S5)

r(2)nm = (dx/2 + na)x̂ + (dy/2 + mb)ŷ. (S6)

From now on, we refer to the set of dipoles defined by (n, m) = (0, 0) as the central dipoles, placed at r(i)00 ≡ r(i), with i = 1, 2. The y

component of the field at the position of the central dipoles, ψ
(i)
loc, is the sum of the waves scattered from the rest of particles plus the

external plane wave:

ψ
(1)
loc (r

(1)) = ψ
(1)
0 (r(1)) + k2α

(1)
y ∑

nm

′
[

Gyy

(
r(1) − r(1)nm

)
ψ
(1)
loc (r

(1)
nm)

]
+ k2α

(2)
y ∑

nm

[
Gyy

(
r(1) − r(2)nm

)
ψ
(2)
loc (r

(2)
nm)

]
,

ψ
(2)
loc (r

(2)) = ψ
(2)
0 (r(2)) + k2α

(1)
y ∑

nm

[
Gyy

(
r(2) − r(1)nm

)
ψ
(1)
loc (r

(1)
nm)

]
+ k2α

(2)
y ∑

nm

′
[

Gyy

(
r(2) − r(2)nm

)
ψ
(2)
loc (r

(2)
nm)

]
, (S7)

where ∑nm runs over n, m and ∑nm
′ means that the sum runs for all indices except for (n, m) = (0, 0).

From Bloch’s theorem, the local fields are related to the field at the central dipoles as

ψ
(i)
loc(r

(i)
nm) = ψ

(i)
loc(r

(i))eıkxna. (S8)

Thus, Eq. (S7) in matricial form readsψ
(1)
loc

ψ
(2)
loc

 =

ψ
(1)
0

ψ
(2)
0

+ k2

 Gbyy G(1−2)
yy

G(2−1)
yy Gbyy

α
(1)
y 0

0 α
(2)
y

ψ
(1)
loc

ψ
(2)
loc

 , (S9)

where the position dependence (r(i)) is assumed and suppressed, and

Gbyy = ∑
nm

′Gyy

(
r(i) − r(i)nm

)
eıkxna,

G(1−2)
yy = ∑

nm
Gyy

(
r(1) − r(2)nm

)
eıkxna,

G(2−1)
yy = ∑

nm
Gyy

(
r(2) − r(1)nm

)
eıkxna. (S10)

From Eq. (S9) it is easy to solve for the local fields (Eq. (1)) once we determine the lattice green dyadic, as follows.
Combining the Poisson summation formula:

2π

a ∑
l

δ

(
K− 2πl

a

)
= ∑

n
eıKan, (S11)
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with the Weyl expansion of the Green function, Eq. (S4), the term G(i−j)
yy can be rewritten as:

G(1−2)
yy = ∑

lp

ı
2kzlpab

(
1−

k2
yp

k2

)
e−ıkxl dx e−ıkypdy ,

G(2−1)
yy = ∑

lp

ı
2kzlpab

(
1−

k2
yp

k2

)
eıkxl dx eıkypdy , (S12)

with
kxl = kx −

2πl
a

, kyp = −2πp
b

, kzlp =
√

k2 − k2
xl − k2

yp. (S13)

At normal incidence, kx = 0 and G(1−2)
yy = G(2−1)

yy reading as:

G(1−2)
yy =

ı
2kzab

+ 4
∞

∑
l=1

∞

∑
l=p

ı
2kzlpab

(
1−

k2
yp

k2

)
cos (kxldx) cos

(
kyldy

)
(S14)

Thus, in the absence of diffraction its imaginary part is

=
[

G(1−2)
yy

]
=

1
2kzab

. (S15)

Similarly, using the Weyl expansion the term Gbyy can be written as:

Gbyy = lim
z→0

∑
lp

ı
2kzlpab

(
1−

k2
yp

k2

)
eıkzlp |z| − Gyy(zẑ)

 , (S16)

where the term (n, m) = (0, 0) has been also included in the sum. Although the real part is intricate (the real parts of both terms in
Eq. (S16) diverge), the imaginary part is well behaved

=
[

Gbyy

]
= − k

6π
+

prop

∑
lp

1
2kzlpab

(
1−

k2
yp

k2

)
, (S17)

where the sum runs for all propagating orders
(
=
[
kzlp

]
= 0

)
.

Finally, for lossless particles the imaginary part of the polarizability is

=
[

1
k2α

]
= − k

6π
. (S18)

Therefore, for non-diffracting gratings at normal incidence

=
[

1
αy
− Gbyy + G(1−2)

yy

]
= 0, (S19)

where we have defined
2
αy

=
1
k2

 1

α
(1)
y

+
1

α
(2)
y

 . (S20)

The result given by Eq. (S19) is independent of the lattice parameters a, b, dx and dy as long as there are no diffraction orders

k < min
(

2π

a
,

2π

b

)
↔ =

[
kzlp

]
= 0. (S21)
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