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This document provides supplementary information to "Shaping long-lived electron wavepackets for
customizable optical spectra,” https://doi.org/10.1364/OPTICA.6.001089. It is organized as follows. In
section 1 we discuss the solutions of the Schrodinger equation that yield the Whittaker wavepackets and
show that they are physical wavepackets. In section 2 we describe the dynamics of the Whittaker
wavepackets and their underlying mathematical properties. In section 3 we discuss the time-dependent
spontaneous emission formalism. In section 4 we explain our numerical experiments.

1. DERIVATION AND PROPERTIES OF WHITTAKER
WAVEPACKETS

In this section we will motivate the origin of the Whittaker con-
structions. There are two steps in our construction: to solve the
Schrodinger equation for the extended eigenstates and then to
construct the wavepackets from superpositions of these states.

We look for spherically symmetric extended states, i.e. | =0
and from separation of variables, the angular part is the spherical
harmonic Yp(8, ¢) = (1/2)7t~1/2. For the radial part f;, the
Schrodinger equation takes the following form
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Equation Eq. (S1) yields both bound eigenstate solutions (for
E < 0) and extended eigenstate solutions (for E > 0). Given
the mass of the electron m, and the electric constant €y we
use the Coulomb potential V(r) = —e?/4mepr. It is useful to
write u(r) = rfg, and define the dimensionless parameter
x =r/(ag/2), where g is the Bohr radius. Likewise, let x = kag
be the dimensionless parameter from momentum k. Substituting
the parameters into equation Eq. (51) we obtain the following
differential equation for u

2
<a—+£+xz)u20. (52)

) (rfe) =E-(rfp). (S1)

The crux of our analysis is understanding the solutions to equa-
tion Eq. (S2). Luckily, we can reduce it to a known differential
equation after some algebraic manipulations. Namely, let W = u,
z = 2ikx, k' = —i/2x and m’ = 1/2. Then Eq. (S2) is equivalent
to the following
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which is known as a version of the Whittaker differential equation
[1]. A basis for the solutions is the following expression

e (x) = 2i‘1<xe*i"x A
r(i-4)r(i+4)

and its conjugate %, (x) [2]. We need to divide by x to obtain
fE1m, which yields the equation in the main text for the Whittaker
modes
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where wi(x,0) = fp,(x), as desired and wi(x, t) =

wy(x,0) exp(—iwtkz) where the time evolution frequency is
given by w = 2¢2 /agh ~ 82 fs—1. From Eq. (54) we obtained the
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Whittaker wavepackets in
YEae(rt) =N/ e*(’(*")z/z‘fzwx(x, t)dx, (S5)

where N is a normalization constant, y and ¢ are the mean
and spread (standard deviation) of momentum. In SI units the
energy E is parameterized as E(k) = (2¢?/4megag)x? via the
dimensionless x. We denote E = E(u) and AE for the spread
(standard deviation). O

We claim that the wave function Eq. (S5) is square-integrable
and therefore its probability density can have a physical mean-
ing. We prove this via the following result.

Theorem 1. The Whittaker wavepacket Y g ag, defined in Eq. (S5), is
square-integrable, hence its probability density has a physical meaning.

Proof. Let¥Y = Y A for convenience. It suffices to show that
fooo |¥|2x?dx is finite. We care only for the large x behavior since
the integral for small x gives a finite contribution. Ignoring
constant factors, for large x we can use the approximation

3 (= p)? . :
x¥ ~ A dx exp <—7) exp(—ixx) exp(i(1/2x) In(x)).
Using the fact that (e~#¥)" = —ixe~** we can apply integration
by parts to multiply the integral by a factor of 1/x and get
additional contributions from constants. Ignoring the constants,
we apply integration by parts again to obtain another factor of
1/x. In conclusion, we obtain the following

const  constlnx

¥ < " n const(lnx)Z.
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(S6)

When we square the RHS of equation Eq. (S6), the results is a
function in x that decays sulfficiently fast, i.e. when we integrate
that function from zero to infinity we get a finite number. Hence,
Jo* I¥[?>x?dx is bounded from above by a finite number, so the
wavepacket is square-integrable, as desired. O

2. DYNAMICS OF THE WHITTAKER WAVEPACKETS

In this section we introduce two important arguments: we de-
scribe the nature of the equations for the spatial spread Ar and
the diffraction lifetime At; we argue for a property that signifies
the quasi-shape-invariant stability of the wavepackets Eq. (S5).

First, we can develop simple analytic tools to get an under-
standing of the evolution in time of the Whittaker superposi-
tions. Then we can conjecture a functional form for Ar and At
that would yield formulas
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after fitting to our simulations.

Theorem 2. The Whittaker wavepacket Eq. (S5) can be approximated
as a Gaussian function in position space with mean yy and standard
deviation oy satisfying

ux(t) = 2uwt and o3 (t) = % + 402 w?t2. (S9)

Moreover, a natural functional anzats for the spatial spread Ar Eq. (S7)
and the diffraction lifetime At Eq. (S8) is given as follows

const and A — const . (S10)
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Proof. After alarge x approximation, the integrand in Eq. (S5)
looks as follows:

exp (—%) tx(x) exp(—iwhcz).

X

We can pull the 1/x term out of the integration since it does not
affect the spread nor the lifetime. Suppose we make a large x
approximation and thus replace the exact Whittaker solution
ux(x) in Yg op with its plane wave approximation exp(—ixt) .
Without loss of generality we are left to consider the following
integral

00 — )2 . .

lIjapprox. = /—oo dx exp (—%) efucxefzwtkz. (Sll)
Now, having the approximation Eq. (S11) we can produce an
analytic estimate for Ax (and thus for Ar). Equation Eq. (511)
combines the exponential with the x> dependence to obtain
exp (7aK2 + b;i + const), where for convenience we denote a =
(1/20% +iwt) and b = x/0?. Performing a Fourier transform
from momentum space to position space and ignoring the con-
stants in the exponential (as they only change the amplitude and
not the mean and the spread of the Gaussian), we obtain the
following Gaussian in x:

(b— ix)z) (x — 2uwt)?
Yapprox. ~ €xp (7 ~exp | ———i Tt .
e 4a 2 (% + 4(72w2t2)

In the last line we substituted for a4, b and ¢ and ignored the
phase factors and the constants that do not affect the evolution
of the probability density x?|¥|2. From the last equation we
extract the yx and oy of the Gaussian in position space to obtain
the statement Eq. (S9). To conclude the theorem, observe from
Eq. (S11) that Ax = 0,(0) = 1/0. Converting to r from the
unitless x, and a conversion to units of energy yields the anzats.
Furthermore, a stationary phase argument yields Ax ~ 2uwAt.
Hence, At o< 1/po, which concludes the proof. O

Theorem 2 is the theoretical foundation for obtaining equations
Eq. (S7) and Eq. (S8), which govern the dynamics of the Whit-
taker wavepackets. In section 4 we describe the procedure of
fitting the constants in the anzats Eq. (S10).

Now, we claim that the mathematical properties of the Whit-
taker wavepackets of angular momentum zero can be used
to explain their quasi-shape-invariance. As we show below,
the Whittaker wave functions Eq. (54) are purely imaginary.
This property results in the Whittaker wavepacket at time zero
Eq. (S5) ¥(r,0) also being purely imaginary. Thus, the nodes
of the probability density r2|¥(r,0)|? are the double roots of
the zeros of the real wave function Im ¥ (r,0). Those zeros of
the imaginary part of ¥(r,0) are closely related to the zeros of
the Whittaker functions. In S1 we show that the zeros of the
extended states are closely spaced near the origin as we vary x
slowly. Therefore, in between the regions of vanishing (circled
on figure S1), Im ¥ (r,0) would take alternating signs. Hence,
by the Intermediate Value Theorem, for small distance 7, the
wavepacket is forced to have a node near the nodes of each of
the extended states.

Therefore, it suffices to show that the functions Eq. (S3) are
purely imaginary. It is convenient to plug the exponential e~/
from the numerator in Eq. (S3) into the integral and consider the
following resulting expression

1 . { i
/ plex(2s=1) g5 (1—s) 2ds. (512)
0



Supplementary Material ‘

@ |

0.12

accumulation of zeros

12, 0)2

0.02

Fig. S1. The zeros of the Whittaker modes generate the
nodes of the Whittaker wavepackets at time t = 0. The ze-
ros of these functions are close to each other for small » and
deviate from each other as r becomes larger.

The trick we present here is a change of variables of the following
form

s=1-5". (S13)
Going through the algebra and relabeling s’ back to s, we obtain
that expression Eq. (512) is equivalent to the following

1 . i i
/ Prex(1-25) o= (1—s)2ds. (S14)
0

The symmetry of Eq. (512) is key to the proof that follows.

Theorem 3. The functions wy(x,0) are purely imaginary.

Proof. In equation Eq. (S3) we plug the exponential from the nu-
merator to factor out expression Eq. (512). We are left with 2ixx
in the numerator, which is purely imaginary. The denominator
isT <1 — ﬁ) r (1 + i) By conjugating the Gamma function
we see that this product is real. Hence, it suffices to show that
expression Eq. (512) is real. We conjugate it and obtain equation
Eq. (S14). The same equation came from the change-of-variables
trick Eq. (513), which means that the integral equals its conjugate,
hence it is real, as desired. O

3. RADIATIVE DECAY FORMALISM

The goal of this section is to derive a general framework of our
spontaneous emission calculations for wavepackets that are not
necessarily eigenstates of the Hamiltonian. As a direct conse-
quence, we can determine the transition rates from the Whittaker
wavepackets Eq. (55) to the bound states of the hydrogen atom.
Our approach is based on computing the matrix elements of the
S-matrix [3]. The S-matrix is given through the matrix elements
of the time-ordered unitary evolution operator as follows

i [t .
Si = (f| Texp {_ﬁ/o Hmtdt’} i),

for an initial state |7) and a final state | ), where the interaction
Hamiltonian is given by

Hint = /dSXlP*Hpara(x/ Byl =

_ ihe /d3x1[)*A(x,t) V.
me .

Then the infinitesimal probability of transition from |i) to | f) is
given by the following equation
Vd3k 5
dP;(k,A) = —=15a(k,A)|5, S15
fl( ) (27_()3| fl( )‘ ( )
where V is a finite volume needed for defining our measure. We
would like to integrate (and sum) over all possible transition
[iy — |f) involving the emission of a photon y(k,A). In the
Heisenberg picture, the vector potential looks as follows

A(x,t) =

[ h ex— N e N
Z DT (ez(kx wkt)ak/\”kA te i(k-x wkt)ui/\nlt)\) ,
kA=12 0%k

where there is a photon with momentum k and polarization A,
and the a-operator, with its conjugate a', are respectively the
annihilation and creation operators for the same photon. The
photon has a frequency wy and a polarized direction & ,. We
are interested in the coupling of the atom to the EM field, so we
concentrate on the paramagnetic term of the total Hamiltonian,
which is given as follows

~ € A
Hpara(x/ t) = m—A(X,t) '13/
e

where m, is the mass of the electron. Suppose we look at the
spontaneous emission from the initial state |i) to the final state
|f) by emitting a photon.

Next we simplify the S-matrix. For (x|f) () = ¥ (x, t) and
(x]i) (t) = ¥in.(x, t), up to first order, we obtain the following

e h t . ’
(k - _ - ! iwpt s
Sei(k,A) mEVZGOka/o dt’e"*" gy

/ BxFpin (%) exp(—ik - x)VEin (x, 1').

The last equation yields the following expansion of |Sg(k, A)|?
as an Einstein summation

S [Yar [ v,
2meeqwiV Jo 0

[ Exdy el Fi, () i (3, explik - (3 = %)):
aTir\. (X, t/) a‘Pikn. (y' t//)

S16
ox; Iy, (516)
Now, we rely on the following chain of basic derivations
~ k ..
k= m ; (normalization)
Exn, @ 8k, t 8k, ® 8, + kok= 13; (orthogonality)

): ei( )\5{( At 1%1'12]» =6ij; (component-wise orthogonality)
A

» kik; y
Y gl = G — W; (rewriting)
A
' JdY; t
1

(extracted from Eq. (S16))
B g . av¥: (y, t
v = / &’y exp(—ik - y)¥in (¥, f’)%,‘
]
(extracted from Eq. (S16))
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0;(6ij — k; - l%j)v}k =|v[>—|v-k>=|vx k> (combining)
Finally, to sum over the polarizations Eq. (S15), we need the
last step from the chain of the derivations to obtain

2 t ot
LISl M2 = s | [ar [ ddxe ¥, (x,t):
/\ P o

- 2m2egwiV

2

emikx (i« X V¥ (, t’)) (S17)

Equation Eq. (517) is the most general formula in our analysis.
From now on we assume that ¥, is the Whittaker wavepacket
Eq. (S5) and that ¥, is the standard bound state ¢, (x)eiwnt’
Thus, in our case, |i) is given by Eq. (S5), which means that the
initial state is spherically symmetric, hence the quantum number
I is zero and thus has no angular dependence. Applying those
remarks to Eq. (517) we directly get

ot : . ,
/0 dtl/dSXEI(warw")tl,U;lm(X)'

2
Eilk‘xl’é X V‘YE,AE(XI t/) .

21
Y ISa(k AP =
0 2mgeqwy V

To further simplify this formula we express both the position
x and momentum k vectors in spherical coordinates: (7, fx, ¢x)
and (k, 6k, ¢x). We use the formula for wavepackets Eq. (S5) and
the decomposition of the bound state into a radial part and a
spherical harmonic respectively: 1, = Ry Y1y, (with standard
notation for the quantum numbers). The azimuth dependence
for k is trivially 27r. Then after simplifying, and integrating
Eq. (515) over k and using the conventions from the previous
paragraph, the formula for the Whittaker’s probability of decay
becomes as follows

p eh “rdk [ g, [ sin6,do
- [ o [
) 16m2egcr3ag Jo Jo ¢k.0 Sk

‘/dqﬁx sinGdeX(fc X Q?)Y;;ﬂ(gk,qbk)efik.x

Zl
2
. (518)

) (wxtwy—wz?)t _
/ YZdTRZI ) ow(r/ap,0)] e
Jo or Wy + wy — wz?

where k - x = kr(sin Ox sin 0y cos(dx — ¢x) +
cosfycosfy) and in the standard basis k X % =
(sin ¢y sin 6 cos Oy — sin ¢y sin Oy cos O, cos Px sin Oy cos O —

sin ¢y sin 0y cos Oy, sin Oy sin Oy sin(¢x — P ) )-

4. NUMERICAL EXPERIMENTS

Our numerical experiments are synthesized in modules in the
software Mathematica, available at [4]. In this section we discuss
methods for calculating the parameters Ar Eq. (S7), At Eq. (S8)
and the average rate ' = P (2(At)) /2(At).

¢ Diffraction lifetime Af: to compute the lifetime we need to
evaluate the overlap function and then fit into the anzats
given by Theorem 2. By definition we need to integrate
for r in the range (0, c0). In practice, this integration can
be done efficiently by observing that the overlap O(t) is
well-approximated by a Gaussian form. Moreover, by a
numerical experiment we find that the shape of the decay

does not change significantly if we only evaluate the inte-
gral up to some finite number. Therefore, we chose (0, 5a9)
as the range of integration. The procedure yields the con-
stant of proportionality in Eq. (S8). The uncertainty coming
from our fits is less than 5% and hence it does not affect the
claims of the paper.

Spatial spread Ar: to compute Ar we observe that the upper
envelope of the wavepackets at time zero is converging to
the right half of a Gaussian as AE tends to zero. Hence, we
extract the envelope numerically and then we fit a Gaussian
for the data points.

Average rate of decay I': to compute T we first evaluate the
integral Eq. (S18). Our computations allow us to plot P(t)
as a function of time. In order to simplify our calculations
we assume the dipole approximation. Note that this ap-
proximation is accurate for transition energies in the visible
spectrum, but becomes less accurate for transition energies
in the soft and hard X-rays. Moreover, the approximation
is useful for better understanding the results because it en-
ables a selection rule for the quantum number [ of the bound
state ¢,;,,,: [ = 1 since Yg af is spherically symmetric and
hence m = —1,0, 1 (the probability of decay is independent
of the selected m). Another interesting feature for the plot
of P(t) (shown in figure S2) is that there is a steady state
for the probability, i.e. after a certain point in time, the rate
of decay becomes zero. We can explain this phenomenon
from a physical point of view: we know that the Whittaker
wavepackets spreads with time. Hence, after some time the
electron will be far away from the hydrogen atom range,
so its overlap with the bound states vanishes. Figure S2
also shows the decay probability for a range of energies and
their energy spreads up to a transition energy at the soft X-
ray spectrum. The plots start with a quadratic behavior and
then switch to a linear regime before they reach their steady
state. Note that this behavior of probability resembles the
one for transitions between bound states.
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Fig. S2. The spontaneous emission dynamics of our wavepacket to bound states, marking the average transition rates. The tran-
sition dynamics is obtained based on the radiate decay formalism Eq. (515), exhibiting a monotonous patterns in the case of varying
AE. The dipole approximation is used to simplify the calculation (the formalism can be applied more generally as discussed in
section 3).
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