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This document provides supplementary information for the article "Dissipative cnoidal waves (Turing 
rolls) and the soliton limit in microring resonators," https://doi.org/10.1364/OPTICA.6.001220. In Sec. 
S1, we show stability maps with normalized detuning. In Sec. S2, we discuss some features of the 
dynamical spectrum of the linearized Lugiato-Lefever equation. In Sec. S3, we give our formulation of 
the quantum noise modeling. In Sec. S4, we give a complete stability for the cnoidal waves where L = 50 
and −2 < α < 6. In Sec. S5, we derive an expression for the asymptotic behavior L/Nper as L → ∞. 

S1. STABILITY MAPS WITH NORMALIZED DETUNING

In this section, we show maps of the regions where stable wave
solutions exist using the normalizations in Eq. (4). These plots
are analogous to the plots in Figs. 3 and 8. In Fig. S1, we use
the evolutionary method to find stationary solutions, and we
integrate up to t = 1000. Each symbol in the figure corresponds
to a different choice of the initial parameters h and δ. We show
results for Lδ = 50 and Lδ = 100 with two different initial condi-
tions. For the low-amplitude initial condition, we use an initial
amplitude of 10−5 at x = 0, and for the high-amplitude initial
condition, we use an amplitude of 105 at x = 0. The cnoidal
wave solutions occupy an approximately cone-shaped region in
the h-δ parameter space. Which cnoidal wave solution appears
depends on the initial condition, as well as the parameters. In
particular, low-periodicity cnoidal waves are never found with
the low-amplitude initial condition. The lowest periodicity that
we observed with Lδ = 50 is Nper = 7, and the lowest period-
icity that we observed with Lδ = 100 is Nper = 15. By contrast,
low-periodicity cnoidal waves, including solitons, can be ob-
tained by starting with the high-amplitude initial condition. As

was the case with the normalization of Eq. (3), the location of the
stability boundaries is ambiguous.

In Fig. S2, we show a map of the stable regions for Lδ = 50
and Lδ = 100 that we obtained using the dynamical approach.
The self-similarity that we previously described in Sec. III is
apparent. The stable regions for Nper = X at Lδ = 50 are ap-
proximately the same as the stable regions for Nper = 2X at
Lδ = 100. As the periodicity increases, the loss that is necessary
to obtain stable cnoidal waves also inreases. Hence, these stable
solutions are disconnected from the lossless analytical solutions
that we previously obtained [S1], which limits the utility of the
analytical solutions.

S2. DYNAMICAL SPECTRUM OF THE LINEARIZED LLE

In this section, we will derive some properties of the dynamical
spectrum of the linearized LLE.

It is useful to first transform ∆Ψ, given in Eqs. (6)–(8) to
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Fig. S1. We show a map of the solutions that emerge using the
evolutionary approach for Lδ = 50 and 100 and for two different
initial conditions.

remove the attenuation by defining

∆X =

∆χ

∆χ̄

 = ∆Ψ exp t =

∆ψ exp t

∆ψ̄ exp t

 . (S.1)

This transformation shifts all the eigenvalues by +1 so that the
fourfold symmetry now appears with respect to the real and
imaginary axes. We note that we have made no change in ψ0,
which has embedded in it the effects of both the pump and
attenuation. We next let ψ0 = r0 + is0, ∆χ = r + is, and ∆χ̄ =
r− is. We also let z(t) = [r(t), s(t)]T , where we use T to denote
the transpose so that z is a column vector. We now find

∂z
∂t

=
∂

∂t

r

s

 =

M11 M12

M21 M22

 = Mz, (S.2)

where

M11 =− 2r0s0, M12 = − ∂2

∂x2 − r2
0 − 3s2

0 + α,

M21 =
∂2

∂x2 + 3r2
0 + s2

0 − α, M22 = 2r0s0.

(S.3)

The operator M is real, which is sufficient to imply that if λ is a
non-real eigenvalue, then λ∗ is also an eigenvalue. Hence, the
eigenvalues are symmetric with respect to the real axis. This
same requirement holds for the linearized equation that cor-
responds to any variant of the scalar nonlinear Schrödinger
equation, not just the LLE [S2].

The key to understanding the symmetry with respect to the
imaginary axis is that the evolution equations that govern z(t)

Fig. S2. Maps of the stable regions for cnoidal waves for Lδ = 10,
25, 50 and 100.

are Hamiltonian. These equations are derivable from the Hamil-
tonian

H =
∫ L/2

−L/2
dx

[
1
2

(
∂r
∂x

)2
+

1
2

(
∂s
∂x

)2
−
(

r2
0 + s2

0 −
α

2

)
(r2 + s2)

− 1
2
(r2

0 − s2
0)(r

2 − s2)− 2r0s0rs

]
.

(S.4)

We then find ∂r/∂t = DH/Ds and ∂s/∂t = −DH/Dr, where
we use D to denote the functional derivative. Hence, we find
that r(x, t) is a canonical coordinate, parameterized by x, and
that s(x, t) is the corresponding canonical momentum. We may
also write the evolution equations as

∂z
∂t

= Mz = J
DH
Dz

, (S.5)

where J is the symplectic operator. It is defined by

J

a(x)

b(x)

 =

 b(x)

−a(x)

 , (S.6)

where a and b are arbitrary functions of x. The operator M
shares with all real Hamiltonian operators for linear systems the
properties M22 = −MT

11, M12 = MT
12, and M21 = MT

21 [S3]. We
now find

J(M− λI)J = JMJ− λJ2 = MT + λI. (S.7)

Since the eigenvalues of M and MT are the same, we conclude
that if λ is an eigenvalue, then so is −λ and hence so is λ∗. So,
the dynamical spectrum is symmetric about the imaginary axis.

We note parenthetically that this Hamiltonian formulation
is a useful starting point for investigating quantum effects in
microresonators.

We found that a number of the eigenvalues associated with
the Nper = 8 cnoidal waves are degenerate. Similar degeneracies
occur with other cnoidal waves. Degeneracy is a consequence of
translational symmetry. The length of one period of a cnoidal
wave is L/Nper. It follows that if ∆Ψλ1(x) is an eigenvector with
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an eigenvalue λ, then so is ∆Ψλ1(x + L/Nper). We must be able
to write

∆Ψλ1(x + L/Nper) =
M

∑
m=1

cm∆Ψλm(x), (S.8)

where the cm are constants, the ∆Ψλm(x) are the eigenvectors
that share the same eigenvalue λ, and M is the total number
of eigenvectors that share that eigenvalue. If an eigenvalue is
simple, then its eigenvector must have a period equal to L/Nper,
which will not be the case in general. Thus, a high degree of
degeneracy is expected for cnoidal waves with large Nper.

S3. QUANTUM NOISE SIMULATION

The fluctuating energy due to quantum noise is at least hν per
mode, where h is Planck’s constant and ν is the central frequency
of the mode. In a system with damping, nature must supply suf-
ficient noise power to guarantee this noise level. The modes in a
microresonator are spaced apart in frequency by the free spectral
range (FSR) 1/TR, where TR is the round-trip time. In practice,
this fluctuating energy limit is just a lower limit. The actual fluc-
tuating energy will typically be higher due to electromechanical
and environmental noise sources [S4].

Writing Um = hν for the m-th mode, we obtain Pm = hν/TR,
where Pm is the corresponding power in the microresonator. It
might seem strange that the noise power in mode m increases
as the frequency separation increases. This increase occurs be-
cause the device size shrinks as the FSR increases, so that the
energy density of each mode increases, and the amount of en-
ergy passing through any point of the microresonator per unit
time increases.

The amplitude of the m-th mode is given by the Fourier trans-
form of A(τ, θ),

Ãm(τ) =
∫ 2π

0

dθ

2π
A(τ, θ) exp(−imθ). (S.9)

The number of different modes that are kept in a simulation
Nmode is equal to the number of node points in the simulation.
We thus find that

Ãm(τ) =
1

Nmode

Nmode

∑
j=1

A(τ, θj) exp(−imθj) (S.10)

after discretization, where θj = 2π j/Nmode. The average
noise power due to quantum fluctuations is given by Pm =
〈|Ãnoise,m|2〉 = hν/TR, where the brackets 〈·〉 indicate an aver-
age over τ. We then find that the average noise power due to
quantum fluctuations at each θj is given by 〈|Anoise(θj)|2〉 =
(hν/TR)Nmode. The loss due to attenuation must be compen-
sated by vacuum fluctuations. In a system with just attenuation,
we find [S5],

TR
dÃnoise,m

dτ
= − l

2
Ãnoise,m + Rm, (S.11)

where 〈Rm(τ)R∗m′ (τ
′)〉 = hνlδ(τ − τ′)δm,m′ . It follows that the

average change in Ãnoise,m in a small time step ∆τ due to noise
is given by

〈|∆Ãnoise,m|2〉 = (hν/TR) [1− exp(−l∆τ/TR)]

' (hν/TR)(l∆τ/TR).
(S.12)

The corresponding change at each node point θj is given by
〈|∆A(θj)|2〉 = (hν/TR)(l∆τ/TR)Nmode. The key point is that

vacuum fluctuations do not change in the presence of dispersion
and an external pump that compensates for loss [S5]. Using
the transformations following Eq. (1), we find that the corre-
sponding changes in ∆ψ̃m and ∆ψ(xj) over a small time step ∆t
are given by 〈|∆ψ̃m|2〉 = (2γ/l)(hν/TR)2∆t and 〈|∆ψ(xj)|2〉 =
(2γ/l)(hν/TR)2∆tNmode.

The computational algorithm is to add Gaussian-distributed
random noise to the real and imaginary part of ψ at each
node point θj, whose variance for each separately is equal to
(1/2)(2γ/l)(hν/TR)2∆tNmode. Alternatively, one can add the
noise in the wavenumber domain, using the variances for the
real and imaginary parts of ∆ψ̃m.

For the parameters of Jaramallo-Villegas, et al. [S6] and as-
suming a step size that is 0.01TR, we first find that l∆τ/TR =
2∆t = 0.02. The noise power that must be added on each time is
given by

〈|∆Ãm|2〉 = (hν/TR)(l∆τ/TR)

= (6.63× 10−34)(2.0× 1014)(2.26× 1011)(0.02)

= 5.99× 10−10 W.
(S.13)

If we assume that there are 512 nodes, which is a typical value
in simulations, then we find that 〈|∆A(θj)|2〉 = 3.07× 10−7 W.
This power corresponds to approximately −35 dBm, which is
small, but larger by about 200 dBm from the noise power due
to roundoff noise in typical simulations. The corresponding
value of 〈|∆ψ̃m|2〉 is 6.03× 10−18, and the corresponding value
of 〈|∆ψ(xj)|2〉 is 3.09× 10−15.

S4. COMPLETE MAP OF THE STABLE REGIONS FOR
L = 50

In Fig. S3, we show a map of the stable regions for all the cnoidal
waves that are stable in the range −2 < α < 6. This map is
presented as a slide show in which one of the stable regions is
highlighted in each slide.

S5. ASYMPTOTIC VALUE OF L/Nper AS L → ∞

Here we calculate the most unstable wavenumber of continuous
waves for parameters where cnoidal waves are stable and contin-
uous waves are unstable. That allows us to predict analytically
which cnoidal wave will form starting from noise when L→ ∞
and to obtain the asymptotic value of L/Nper. This procedure
is similar to the one used by Godey et al. [S7] to predict which
cnoidal wave will appear when continuous waves go unstable.

We start by assuming that ψ0 is a complex constant. We then
find that ρ = |ψ0|2 is given by the solution to the cubic equation

[1 + (α− ρ)2]ρ = F2. (S.14)

We now perturb this solution, using the ansatz ∆ψ = exp(λt +
ikx), ∆ψ̄ = ∆ψ∗. Substitution into Eq. (7) yields λ = −1 ±
[ρ2 − (2ρ− α− k2)2]1/2. The growth rate λ is maximized when
dk/dλ = 0, which implies k = (2ρ− α)1/2 or

L/Nper = 2π/k =
2π

(2ρ− α)1/2 . (S.15)

Substitution of the solution of Eq. (S.14) into Eq. (7) permits us to
compute L/Nper. For α = −2, F = 3.5, we find L/Nper = 3.04;
for α = −1, F = 2.6, we find L/Nper = 3.43; for α = 0 and
F = 1.7, we find L/Nper = 4.07; for α = 1, F = 1.2, we find
L/Nper = 4.93.
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Fig. S3. A slide show map of all the stable regions for the cnoidal waves at L = 50 in the range −2 < a < 6. One of the stable regions
is highlighted in each slide; the regions are labeled with their corresponding periodicity Nper. The red-dashed line shows the boundary
below which continuous waves are stable.
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