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This document provides supplementary information to “Multifunctional integrated photonics in
the mid-infrared with suspended AlGaAs on silicon,” https://doi.org/10.1364/
optica.6.001246 In Section 1, we discuss experimental results for unpassivated waveguides. In
Section 2, we analyze sources of propagation loss in the mid-IR. In Section 3, we discuss the
damage threshold and physical robustness of suspended AlGaAs waveguides. In Section 4,
we consider miscellaneous details pertaining to the design and fabrication of the devices. In
Section 5 we elaborate on the measurement setups for the passive and nonlinear
characterization.

1. Characterization of unpassivated waveguides

If no passivation is used on the AlGaAs waveguide surfaces, it will very rapidly form a native
oxide layer consisting of various phases of arsenic, gallium and aluminum oxides. In the near-IR,
the resulting losses of this reconstruction layer are noticeable on the level of 1 dB/cm for
nanoscale waveguides [1]. However, the effects of this layer on photonic devices have not yet
been studied in the mid-IR. We tested several devices without SiN passivation to better
understand its effects on these waveguides. The results are summarized in Table S1. In the first
test, an unpassivated waveguide from an earlier fabrication run (core thickness 350 nm,
waveguide width of 2.2 um) was tested via cutback at 4 = 3.4 um to find the propagation loss
once the surface was fully oxidized (after weeks in atmosphere). The loss was so high that it
could only be measured with 0.9 mm propagation length difference using a microbolometer array
to resolve the faint out-coupled modes. A propagation loss > 100 dB/cm was observed. Next, we
examined a different waveguide (core thickness 540 nm, waveguide width of 2.2 um) which was
only passivated on the bottom surface. We stripped the top oxide using ammonium hydroxide
and hydrochloric acid, then measured the loss roughly 1 hour later. We recorded a loss of 16
dB/cm. Finally, we examined the loss at 4 = 4.6 um using ring resonator measurements. The
device under consideration had a core thickness of 540 nm, a ring waveguide width of 2.7 pum,
and only bottom-side passivation similar to the previous example. A loss of 5.5 dB/cm was
observed about 30 minutes after the top-oxide strip.
A few conclusions may be drawn from these data. The first is that unpassivated AlGaAs
waveguides exhibit substantial absorption losses near A = 3.4 ym. Secondly, it does not take



much time for the losses to increase to unacceptable levels, meaning that even laboratory-scale
demonstrations of similar platforms should count on implementing passivation prior to measuring
devices. Finally, the lower loss observed at 4 = 4.6 um suggests that there is significant structure
to the absorbance spectrum of the surface states, although it is still problematic well beyond the
spike in loss observed near 4 = 3.4 uym. This absorbance feature is worthy of future study to
highlight its chemical origins, since it does not correspond to any previously observed feature
in the absorption spectra of gallium or arsenic oxides [2]. Note that in Ref. [2], the absorption
feature near A = 3 um is due to water contamination in the samples, and should not be interpreted
as an intrinsic feature of the materials.

2. Mid-IR loss contributions

In the main manuscript, we characterized the performance of microring resonators over a
spectrum spanning from A = 1.26 — 4.6 um. In this section of the Supplement, we consider
potential contributions to loss in the mid-IR. Free-carrier absorption could be a factor, given
that it generally exhibits loss that increases with wavelength. However, reasonable estimates
based on a background carrier concentration of 1 x 10°¢m™ put the estimated free-carrier
absorption at A = 5 um at a value of < 0.1 dB/cm [3]. Another potential source of loss is the SiN
passivation layer, with a total thickness of 30 nm (10 nm on bottom surface, 20 nm on top). First,
we measured via prism coupling a bulk material loss of < 2 dB/cm at A = 1550 nm for the SiN
film by itself, indicating reasonably good film quality. To test the performance in the mid-IR, we
performed a differential measurement by depositing 20 nm of additional SiN material on a spiral
waveguide cutback with known propagation loss. Measuring at 4 = 3.4 um, we observed an
increase in propagation loss of roughly 1-2 dB/cm. Since the optical mode overlap in the nitride
film is only 2%, the equivalent bulk SiN loss at 4 = 3.4 um is on the order of 50-100 dB/cm.
Since this value is almost two orders of magnitude larger than the losses measured at 4 = 1550
nm, we investigated further with Fourier-transform infrared spectroscopy (FTIR). A SiN film
80 nm thick was deposited on a double-side-polished float zone silicon substrate and measured
along with a reference silicon substrate. The sample was oriented at 50° with respect to the
illumination axis to minimize reflections. The transmission spectrum, after baseline, reference,
and water vapor corrections, is shown in Fig. S1(a). A clear absorption signature is present near
A =3 um, which is most likely due to N-H bonds. Although the SiN film was sputtered without
any hydrogenated precursors (specifically to avoid N-H bond contamination), it is possible that
some hydrogen was incorporated from the residual gas background of the vaccuum chamber. In
Fig. S1(b), the absorption near A = 3 um is zoomed in to illustrate its shape. Evidently, some
absorption loss from the N-H bond is still present even at 4 = 3.4 um, which would explain
the strong impact on loss measurements at that wavelength. We note that this sample was not
annealed (which was crucial to reducing SiN losses), so it may not exhibit exactly the same
characteristics as the films on the final samples. Next, we measured loss using the DFG pump
source used for mid-IR supercontinuum (4 = 3.06 um). Cutback measurements of paperclip-style
1.8 um-wide waveguides revealed a loss of 10 dB/cm (Fig. S1(c)), confirming the stronger

Table 1. Summary of loss measurements for unpassivated waveguides.

A (nm) Loss Passivation Time delay after oxide strip Method
3400 >100 dB/cm none weeks cutback
3400 16 dB/cm bottom side only (SiN) 1 hr cutback

4560 5.5dB/cm  bottom side only (SiN) 30 min ring resonator
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Fig. 1. (a) FTIR measurement of a thin sputtered SiN film, showing transmission dips from
N-H and Si-N absorption features. (b) Zoom of the N-H absorption feature. (c) Measurement
of the propagation loss at 4 = 3060 nm via paperclip cutback structures (waveguide width of
1.8 um).

absorption effects for photon energies closer to the N-H resonance.

Finally, we used the FTIR measurements to estimate the limit of transparency achieved with this
passivation strategy. In Fig. S1(a), a drop in transmission is visible for A > 7.3 um. This roll-off
results from a Si-N stretch resonance, an unavoidable feature of this material [4]. However, the
technique used to realize our suspended waveguides can be readily adapted for other passivation
materials with much wider transparency windows. For example, zinc sulfide (ZnS) is transparent
out to A = 13 pm, at which point multi-phonon absorption causes it to become opaque [5]. Future
work will employ this or similar materials to fully unlock the transparency window of suspended
AlGaAs.

3. Damage threshold and physical robustness

During the 1550 and 3060 nm pumped supercontinuum experiments, we kept note of the average
power levels at which the input edge coupler of a waveguide was damaged. For 1550 nm pumping,
an average incident (prior to coupling) power level of 14 mW was just enough to damage some
waveguide facets. Considering the lens NA of 0.6, the 160 MHz pump repetition rate, and the
pulse duration of 61 fs, this translates to a critical peak intensity of 117 GW/cm? for a Gaussian
beam centered at the facet of the waveguide. For this calculation, we use Eq. S1 to relate the
intensity at the center of a Gaussian beam to its total power:
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where Iy is the intensity at the center of the beam, P is the total power (the peak power of the
pulse, in our situation), and wy is the beam waist at the focal point, related to the NA through Eq.
S2:

Ao
aNA’
where Ay is the free-space wavelength of the beam, and NA is the numerical aperture of the
focusing optic used for the measurement (assuming the aperture is completely filled). In earlier
experiments, we also tested pumping of the waveguides with a stretched pulse of duration
estimated to be 220 + 50 fs using a lensed fiber (NA = (.5). In this case, the maximum average
power that could be tolerated increased to 70 mW. The corresponding critical peak intensity
would be 113 GW/cm?, which corresponds well with the critical intensity for the fully compressed
pulse. This suggests the failure mechanism is more dependent on peak than average power levels
in the regime considered here. Finally, we also performed the same analysis for pumping at
A =3060 nm. An average incident power level of 35 mW was enough to cause facet damage.
Considering the lens NA of 0.56, the 100 MHz pump repetition rate, and the pulse duration of 85
fs, this translates to a critical peak intensity of 76 GW/cm? at the facet of the waveguide. This
places it close to the value observed for the 1560 nm case.

The suspended membranes exhibited excellent mechanical stability during the fabrication
process and subsequent experiments. They do not collapse during solvent cleaning or aggressive
nitrogen drying in ambient atmosphere, so it is not necessary to use vapor-phase treatments
at any point. Prior to die release from the wafer, the membranes underwent heating to 180°C
during the pre-bake of the electron-beam resist. Despite the hot air sealed in the sub-surface
trenches producing a substantial force against the membranes, they were not damaged. Finally,
considering the temperature limit of the individual chips, the maximum tolerable temperature
(above which material defects appear) is approximately 450°C, limited by thermal expansion
mismatch between the materials.
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4. Miscellaneous

In this section, we discuss additional details on the design, fabrication and characterization of the
structures and devices considered in the manuscript.

4.1. Epitaxial growth

We started with an epi-ready (100) GaAs wafer and performed oxide removal using an argon-
hydrogen plasma in the molecular beam epitaxy (MBE) system’s ultrahigh vacuum preparation
chamber. The wafer was then transferred to the main growth chamber of the MBE system. First a
250 nm GaAs buffer layer was grown, followed by a 150 nm etch stop layer of AlygoGaga0As. A
550 nm device layer of Aly3,GaggsAs completed the structure. The device layer thickness drops
to approximately 540 nm after several oxide removals during the processing. The background
doping of this device layer was not directly measured, but previous wafer runs have exhibited
background carrier concentrations of less than 1x10'% cm™ for GaAs epilayers, indicating the
high material quality from this MBE system.

4.2. Surface passivation process

A key element of the fabrication process in this work is the surface passivation. The following
procedure was applied for both the top and bottom surfaces of the AlGaAs membrane: (1)
ammonium hydroxide oxide removal, (2) hydrochloric acid oxide removal, (3) immediate transfer
and evacuation of the load-lock of a sputtering tool, and (4) RF reactive sputtering of silicon
nitride. For the sputtering, a platen plasma power of 10 W was applied to the substrate holder,
and a silicon target was sputtered with 140 W of plasma power under under argon and nitrogen



flow (nitrogen at 22% of the flow rate of the argon) to form silicon nitride on the surface of the
sample, at a pressure of 3 mTorr. The sputtering was performed at room temperature with a base
chamber pressure of < 1 x 1078 Torr. A growth rate of 0.5 nm/min was observed.

4.3. Plasma etching

Next, we consider the plasma etching conditions and their impact on the waveguide geometry.
We utilized boron trichloride (BCl3) and argon (Ar) chemistry in an inductively-coupled plasma
(ICP) etching chamber. The ICP power was 350 W, the platen power was 50 W, the pressure was
5 mT, the BCl3 flow rate was 5 sccm and the Ar flow rate was 20 sccm. A typical waveguide
sidewall angle obtained after etching was 86 degrees (positive slope). Additionally, a "foot" near
the base of the waveguide core was always observed, giving an increased slab thickness in the
vicinity of the core. This was factored into critical calculations such as the waveguide dispersion
for supercontinuum generation. Because of this feature, the slab region within gaps < 600 nm
was abnormally thick. For example, instead of a typical slab thickness of 90 nm, it was closer to
150 nm near the waveguide core’s sidewall region, so we expect the effective slab thickness to
vary between those two values as the gap is varied, though we did not directly image this. If a
transition between gapped waveguides is made too quickly, this could result in additional radiative
losses due to modal mismatch. Partly for this reason, we used pulley couplers for the microring
resonators considered in the manuscript, which allow a more gradual transition to the gap region.
Since some ring devices were measured over more than an octave of bandwidth, however, they
also served to enable sufficient coupling over a wider frequency range than single-point couplers.
Further details can be found in Ref. [6].

4.4. Multimode waveguides and applications

We also comment on the use of multimode waveguides for many of the ring resonators measured.
In targeted applications such as resonantly-enhanced evanescent sensing, it is usually desirable to
carefully design the coupler region, the bus waveguide, and the ring waveguide to concentrate the
coupling into a given mode and minimize losses or reductions to the intensity contrast. For the
purposes of this work, however, microring resonators were used as a diagnostic tool for accurately
measuring propagation loss, rather than a functional device for such applications. With lower
propagation losses, smaller waveguide core widths could be used in the rings while maintaining
a high Q to make mode management more straightforward, if desired. However, for non-resonant
(single-pass) evanescent sensing, as well as supercontinuum generation, the use of multimode
waveguides is not an issue for performance, since light can be confined to a single spatial mode
through appropriate use of adiabatic tapers and sufficiently gradual, low-loss bends (such as those
demonstrated in this work).

4.5. Thermal shift in resonant structures

Next, we briefly consider the thermal properties of the ring resonators. Due to the thin mechanical
support connecting the waveguide core to the substrate, they are expected to exhibit considerable
thermal resistance, which can be beneficial or detrimental depending on the application in mind.
For example, highly efficient thermo-optic modulation could be achieved, but dissipative Kerr
soliton generation would be more difficult due to the large resonance shift for different circulating
optical powers. We performed a characterization of this thermal shift in a ring resonator with 50
um radius as shown in Fig. S2. The loaded Q of the resonator was 2.9 X 10°, with an extinction
ratio of 4 dB. At 1.5 yW waveguide-coupled power (in the bus waveguide outside the ring), the
resonance exhibited no noticeable thermal triangle. When the on-chip power was increased to
89 uW, a thermal red-shift of 5 GHz was observed. The large shift is mainly due to the wide
membrane (about 11 um), which dominates the thermal resistance. This width was chosen for
low-loss operation at longer wavelengths in the mid-IR, but for applications requiring better
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Fig. 2. Characterization of the thermal resonance shift observed in a 50-um radius resonator.
(a) Cold cavity resonance trace for 1.5 pW waveguide-coupled power; (b) Thermally shifted
resonance at a higher power of 89 uW.
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Fig. 3. (a) Calculated 3PA coeflicient vs. wavelength for Aly3,GagggAs. (b) Calculated
transmitted intensity vs. intial intensity I for light propagating in an Aly3,GagggAs
waveguide at 1560 nm, using the 3PA coefficient from (a).

thermal conductivity, the membrane width could be substantially reduced to allow a shorter path
to the much more thermally conductive silicon substrate.

4.6. Nonlinear losses

For applications in frequency conversion and spectrum broadening that will rely on 1550-nm
pulsed laser sources, the effects of nonlinear absorption are important to consider. With the
Al 32Gag ggAs composition used in this work, two-photon absorption (TPA) will not occur
for pump wavelengths longer than 1362 nm, allowing significant broadening of a 1560 nm
pump before any TPA is observed. However, three-photon absorption (3PA) is still a significant
effect, due to its relatively large coefficient in AlGaAs [7]. Using the model for scaling rules of
3PA absorption in AlGaAs presented in Ref. [8], we have plotted the calculated absorption for
Alp32GagggAs in Fig. S3(a). At 1560 nm, its 3PA coeflicient has a value of 0.063 cm’GW2,
which is similar to the value of 0.065 cm>GW-2 for lower-Al compositions such as Al ;3Gag g As.
Mainly, the peak value and the peak absorption wavelength are lowered and blue-shifted for
higher Al content. Considering the absorption effects of 3PA alone, the on-chip normalized



transmission can be modeled as

Y & 3
Pl (3)
where [ is the intensity in the waveguide, z is the distance in the propagation direction, and
a3 is the 3PA coeflicient [7]. Solving Eq. S3 for the case of I(0) = Iy where Iy is the initial
waveguide-coupled intensity, we obtain

1
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In the case of a 4 mm long waveguide (as we used in the case of near-IR supercontinuum
generation), we have plotted Eq. S4 for different Iy in Fig. S3(b). It can be seen that for
waveguide-coupled intensities greater than 10 GW/cm?, the output is heavily saturated. In the
supercontinuum experiments in Sec. 2.3.1 of the manuscript, not much change was observed in
the shape of the spectrum beyond 3.4 pJ of pulse energy, corresponding to about 20 GW/cm?
peak pulse intensity, averaged over the waveguide mode area. This is in fairly good agreement
and lends credibility to the notion that the spectrum bandwidth is currently limited by 3PA.

4.7. Substrate leakage

Finally, we briefly comment on the cutoff wavelength achieved for the waveguide/platform
geometry presented in this work. This particular suspended geometry supports waveguiding over
a large optical bandwidth thanks to the nearly symmetric environment (except for the membrane’s
slab) and strong index contrast. Considering the waveguide used for supercontinuum generation
in the mid-IR, with a width of 2.15 um, eigenmode simulations show that leakage into the sides
of the trenches becomes noticeable at a value of 0.4 dB/cm at 7 um. At 7.5 um, a leakage loss
of 3.5 dB/cm is simulated. A true mode cutoff is not observed before leakage losses become
excessive. We also note that larger trench widths can be employed to mitigate leakage losses for
applications requiring long-wave operation.

5. Measurement setups

Here, we provide additional details on the measurement setups utilized in the experiments. The
main configurations are shown in Fig. S4. In all cases, the polarization of the laser light was
oriented parallel to the table to excite the quasi-TE mode of the waveguides. The setup in Fig.
S4(a) was used for the 1550-pumped supercontinuum experiments (asphere NA = 0.6, lensed
fiber mode field diameter = 2.5 pm). Using a lensed fiber at the output allowed higher-efficiency
broadband collection of light compared to a lens. The setup in Fig. S4(b) was used for microring
resonator measurements and coupling loss tests for 4 = 1260, 1550 and 2400 nm (asphere NA =
0.6). Alignment was performed at near-IR wavelengths using the Vidicon camera, after which
a reflective collimator was substituted into the beam path and used to collect the output into a
50 ym-core multi-mode silica fiber. The setup in Fig. S4(c) was used for 3060 nm pumping
experiments (asphere NA = 0.56). The setup in Fig. S4(d) was used for microring resonator
analysis at 4 = 3.6 um using the idler beam output of an optical parametric oscillator (OPO).
Because of the erratic nature of wavelength tuning using etalon angles, a wavemeter was aligned
to the input path to periodically check wavelength as needed. Finally, the setup in Fig. S4(e) was
used for microring resonator analysis at 4 = 4.6 um. Using laser pump current modulation at a
fixed temperature, a wavelength tuning range of about 8 nm was achieved. The beam exiting the
QCL was magnified 3x with a Galilean beam expander, to better match the 6 mm clear aperture
of the asphere (NA = 0.56). The polarization was rotated to TE using a half-wave plate prior to
coupling into the waveguide. For all setups used for measuring coupling loss, the experiment was



performed in four steps: (1) measure the absolute power transmission through the device under
test with a power meter, (2) measure the absolute power transmission through the same path
with no device in place (the light was simply coupled through both identical aspheric lenses),
(3) calculate transmission as the ratio of these two quantities, and (4) factor out any relevant
propagation losses (usually negligible, except for the case of A = 4.6 um). The final loss per edge
coupler is then half of the total loss.
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Fig. 4. Measurement setups used in the experiment. (a) 1550 nm-pumped supercontinuum;
(b) micro-ring resonator analysis at 1260, 1550 and 2400 nm; (c) 3060 nm-pumped
supercontinuum; (d) micro-ring resonator analysis at 3600 nm; (e) micro-ring resonator
analysis at 4600 nm. PM-SMF: polarization-maintaining single-mode fiber; ND: neutral-
density filter; DUT: device under test; OSA: optical spectrum analyzer; ECL: external
cavity laser; RC: reflective collimator; MMF: multimode fiber; BEX: beam expander; HWP:
half-wave plate.





