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1. DERIVATION OF SINGLES/COINCIDENCE COUNT-
ING RATE

A. probe source and noise source
The SPDC state generated in the semiconductor waveguide
could be expressed as:

|Ψ〉 = |vac〉+
∫ ∞

−∞

∫ ∞

−∞
φ(tp − tr) exp(−iωp,0tp − iωr,0tr)

a†
p(tp)a†

r (tr)dtpdtr |vac〉 (S1)

where ap, ar are the waveguide mode operators that probe and
reference photons are generated in. The density operator of the
source is just ρpr = |Ψ〉 〈Ψ|. The generation flux of the probe
and reference photon is:

ν = tr{ρpra†
p(t)ap(t)} =

∫ +∞

−∞
|φ(t− tr)|2dtr (S2)

where tr stand for the trace over the total Hilbert space. We
assume that the background noise photons occupy a single mode
ab with density operator ρb. The flux νb,0 of the noise photons is
given by:

νb,0 = tr{ρba†
b(t)ab(t)} (S3)

B. POVM of the photon detection events
We first model the photon detection events on the detector x
(with x = p, r denoting the probe or reference detector, respec-
tively). Since we are only interested in the rates of different

photon detection events (single detector detection, coincidence
detection and no detection), it suffices to consider a small time
interval T = [t− τ

2 , t + τ
2 ) during which the photon detection

probability is much less than unity. There are only two possi-
ble kinds of detection outcome for either detector x = p, r: no
detection or detecting a single photon at time tx ∈ T . The no
detection event is modeled by projection onto vacuum state of
the mode x: Vx = |vacx〉 〈vacx|. To include the effect of the finite
temporal resolution ∆t of the detectors, we model the photon
detection event at time tx on detector x as the operator Πx(tx):

Πx(tx) =
1

∆t

∫ tx+
∆t
2

tx− ∆t
2

b†
x(t
′)bx(t′)dt′ (S4)

where the mode operator bx denote the detected mode of de-
tector x. We model the inefficiency of the detector as the loss
from the waveguide mode ax to the detected mode bx so that
the detection efficiency on mode bx could be treated as 100%.
The ∆t characterizes the temporal resolution of the detectors.
{Πx(tx)}tx∈T altogether with Vx forms a POVM on the sub
Hilbert space of the photon in mode x, provided that the total
photon number in mode x over time T is not more than than
one: ∫

tx∈T
Πx(tx)dtx + Vx = Ix (S5)

where Ix stand for the identity operator on mode x. The total
POVM corresponding to the joint photon detection event (single
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detector detection, coincidence detection and no detection) is
just a tensor product of the two single detector POVMs (x = p
and x = r) :

Vp ⊗Vr +
∫

tr∈T
dtrVp ⊗Πr(tr) +

∫
tp∈T

dtpΠp(tp)⊗Vr

+
∫∫

tp ,tr∈T
dtpdtrΠp(tp)⊗Πr(tr) = I (S6)

where I is the identity operator on the joint Hilbert space. The
four terms in the above expression correspond to (from left to
right) no detection on either detector, only probe detector fires
at time tp, only reference detector fires at tr, and both detector
fire at (tp, tr).

C. singles counting rate

We shall work in the Heisenberg picture. Denote the joint quan-
tum system as ρd = ρpr ⊗ ρb ⊗ ρv. Here the vacuum density
operator ρv is on a mode that is used to model the attenuation of
the reference photons. Then the total number of photon detected
at detector x = p, r over the interval T is given by:

〈Nx〉 =
∫ t+ τ

2

t− τ
2

dtxtr{Πx(tx)ρd}

=
∫ t+ τ

2

t− τ
2

dtx

∫ tx+
∆t
2

tx− ∆t
2

dt′tr{b†
x(t
′)bx(t′)ρd} (S7)

The expression Eq. (S7) could be evaluated through expanding
the detector mode operators bx to the waveguide mode operator
ax. We model the loss of the reference channel as the mixing be-
tween the waveguide mode for the reference photons ar and the
vacuum mode av at a balanced beam-splitter with transmission
ηr for the reference photon. Similarly, we model the noise and
loss in the probe channel as the mixing between the waveguide
mode ap and the background noise mode ab at a beam-splitter
with transmission ηp for the probe photon. Through operator ex-
pansion, the detected mode operator bp(br) could be expressed in
terms of waveguide mode operators ap(ar) and the background
noise mode operator ab (and the vacuum mode operator av):

 br

br′

 =

 √
ηr i

√
1− ηr

i
√

1− ηr
√

ηr

 ar

av

 (S8)

 bp

bp′

 =

 √
ηp i

√
1− ηp

i
√

1− ηp
√

ηp

 ap

ab

 (S9)

where b′r, b′p are the mode operators of the “unused output port
ports” of the virtual beam-splitters. Then the photon detection
rate Eq. (S7) on the probe detector (x = p) could be expressed in
terms of the generated SPDC state ρpr = |Ψ〉 〈Ψ| and the density

operator of the background noise mode ρb:

〈Np〉 =
∫ t+ τ

2

t− τ
2

dtx

∫ tx+
∆t
2

tx− ∆t
2

dt′tr{b†
p(t
′)bp(t′)ρd} (S10)

=
∫ t+ τ

2

t− τ
2

dtx

∫ tx+
∆t
2

tx− ∆t
2

dt′(ηptr{a†
p(t
′)ap(t′)ρpr ⊗ ρb} (S11)

+(1− ηp)tr{a†
b(t
′)ab(t

′)ρpr ⊗ ρb}

+i
√

ηp(1− ηp)tr{a†
p(t
′)ab(t

′)ρpr ⊗ ρb} (S12)

−i
√

ηp(1− ηp)tr{a†
b(t
′)ap(t′)ρpr ⊗ ρb}) (S13)

=
∫ t+ τ

2

t− τ
2

dtx

∫ tx+
∆t
2

tx− ∆t
2

dt′(ηptr{a†
p(t
′)ap(t′)ρpr} (S14)

+(1− ηp)tr{a†
b(t
′)ab(t

′)ρb}

+i
√

ηp(1− ηp)tr{a†
p(t
′)ρpr}tr{ab(t

′)ρb} (S15)

−i
√

ηp(1− ηp)tr{ap(t′)ρpr}tr{a†
b(t
′)ρb}) (S16)

The last two terms are vanishing because the probe photons
have zero average phase tr{ap(t)ρpr} = 0, tr{a†

p(t)ρpr} = 0.
By definition the probe photon flux ν = tr{a†

p(t′)ap(t′)ρpr} =∫ +∞
−∞ |φ(t

′ − tr)|2dtr and νb,0 = tr{a†
b(t
′)ab(t′)ρb} is the gener-

ation flux of the probe photons and the noise photons. Then
the photon-detection rate P∗p on the probe detector could be
expressed as:

P∗p =
〈Np〉

τ
= ηpν + (1− ηp)νb,0 (S17)

Similarly, the photon-detection rate on the reference detector P∗r
could be expressed as:

P∗r =
〈Nr〉

τ
= ηrν (S18)

The single channel detection rates Pp, Pr are defined as the rate
of the photon detection events that does not contribute to coinci-
dence detection:

Pp = P∗p − Pc (S19)

Pr = P∗r − Pc (S20)

where Pc is the coincidence detection rate that will be defined in
the next section.

D. coincidence counting rate

Now we consider the coincidence detection events that are con-
tributed by both detectors for the small time interval T . The
probability density of detecting one photon on the probe detector
at time tp ∈ T and detecting one photon on the reference de-
tector at time tr ∈ T is given by p(tp, tr) = tr{Πp(tp)Πr(tr)ρd}.
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Again through operator expansion, it could be shown that:

Πp(tp)Πr(tr) =
1

∆t2

∫ tp+
∆t
2

tp− ∆t
2

∫ tr+
∆t
2

tr− ∆t
2

b†
p(t
′
p)bp(t′p)b

†
r (t
′
r)br(t′r)dt′pdt′r

(S21)

=
1

∆t2

∫ tp+
∆t
2

tp− ∆t
2

∫ tr+
∆t
2

tr− ∆t
2

dt′pdt′r (S22)

{ηpa†
p(t
′
p)ap(t′p) + (1− ηp)a†

b(t
′
p)ab(t

′
p) (S23)

+i
√

ηp(1− ηp)(a†
p(t
′
p)ab(t

′
p)− ap(t′p)a†

b(t
′
p))} (S24)

×{ηra†
r (t
′
r)ar(t′r) + (1− ηr)a†

v(t
′
r)av(t′r) (S25)

+i
√

ηr(1− ηr)(a†
r (t
′
r)av(t′r)− ar(t′r)a†

v(t
′
r))} (S26)

Simple calculation shows that Eq. (S24), and Eq. (S26) do not
contribute to coincidence detection events for the joint state
ρd. Then the probability p(tr, tb) of detecting one photon on
the probe detector at time tp and detecting one photon on the
reference detector at time tr is given by:

p(tp, tr) = tr{ρdΠp(tp)Πr(tr)} (S27)

=
1

∆t2

∫ tp+
∆t
2

tp− ∆t
2

∫ tr+
∆t
2

tr− ∆t
2

dt′pdt′r (S28)

tr{ρpr ⊗ ρb{ηpa†
p(t
′
p)ap(t′p) + (1− ηp)a†

b(t
′
p)ab(t

′
p)} (S29)

×{ηra†
r (t
′
r)ar(t′r) + (1− ηr)a†

v(t
′
r)av(t′r)}} (S30)

=
1

∆t2

∫ tp+
∆t
2

tp− ∆t
2

∫ tr+
∆t
2

tr− ∆t
2

dt′pdt′r{(1− ηp)ηrνbν + ηpηr|φ(t′p − t′r)|2}

(S31)

= (1− ηp)ηrνbν +
ηpηr

∆t2

∫ tp+
∆t
2

tp− ∆t
2

∫ tr+
∆t
2

tr− ∆t
2

dt′pdt′r|φ(t′p − t′r)|2

(S32)

The first term is the contribution of noise-reference photon pairs
to coincidence detection events. The contribution of actual probe-
reference photon pairs to p(tp, tr) is given by:

ppairs(tp, tr) =
ηpηr

∆t2

∫ tp+
∆t
2

tp− ∆t
2

∫ tr+
∆t
2

tr− ∆t
2

dt′pdt′r|φ(t′p − t′r)|2 (S33)

=
ηpηr

∆t2

∫ +∞

−∞

∫ +∞

−∞
dt′′dtGate(

t− tp + t′′

∆t
)Gate(

t− tr

∆t
)dt|φ(t′′)|2

(S34)

=
ηpηr

∆t

∫
dt′′tri(

tp − tr − t′′

∆t
)|φ(t′′)|2 (S35)

where Gate(t) is is one over [−1/2, 1/2] and zero otherwise.
Triangle function tri(x) is the convolution between two gate
function Gate(t). From the above equation it could be seen
that ppairs(tp, tr) is the convolution of the triangle function

tri( tp−tr−t′′

∆t ) (dictated by the detector temporal resolution ∆t)
and the temporal correlation function |φ(t′′)|2 ( related to the
joint temporal intensity function |φ(tp − tr)|2).

During the interval T , the average number of coincidence
detections 〈Nc〉 is related to the coincidence window Tc:

〈Nc〉 =
∫ t+ τ

2

t− τ
2

dtp

∫ tp+
Tc
2

tp− Tc
2

dtr p(tp, tr) (S36)

= 2(1− ηp)ηrνbντTc +
∫ t+ τ

2

t− τ
2

dtp

∫ tp+Tc/2

tp−Tc/2
dtr ppairs(tp, tr)

(S37)

The second term of the above equation represents the number of
coincidence detection events that are due to actual SPDC photon
pairs. To ensure that each probe-reference photon pair detected
will contribute to a coincidence detection event, the coincidence
window Tc must exceeds the sum of the full width of the trian-
gle function tri( tp−tr−t′′

∆t ) and the temporal correlation function
|φ(t′′)|2. The full width of the triangle function is twice the de-
tector temporal resolution ∆t and the full width of the temporal
correlation function is given by 3 times the intrinsic correlation
time ∆t0. We defined the effective temporal correlation time
∆te f f as:

∆te f f = 2∆t + 3∆t0 (S38)

When Tc ≥ ∆te f f , the integral in Eq. (S37) could be approxi-
mated by ηpηrν and the coincidence detection rate is given by:

Pc =
〈Nc〉

τ
= (1− ηp)ηrνb,0νTc + ηpηrν (S39)

Note that in the above expression Pc for the coincidence counting
rate, the contribution of accidental coincidence detection events
is neglected (an accidental coincidence detection event is con-
tributed by a probe and a reference photon from two different
photon pairs). This approximation is valid in our experiment
because the coincidence detection window Tc ' 200ps is much
less than the average interval of the photon pair generation
1/3.87MHz ' 258ns.

E. correction of the beam-splitter model
We adopt a hypothetical beam-splitter with transmission ηp
to model the total transmission of the probe photons and the
mixing of the probe photons and noise photons. However, this
simple model has a big problem: the detected noise power is
dependent on the probe photon transmission ηp. Therefore to
ensure constant noise flux νb detected on the probe detector
regardless of the probe transmission ηp, we set the noise source
flux:

νb,0 = νb/(1− ηp) (S40)

Then the single channel detection rate Pp, Pr and the coincidence
detection rate Pc (with Tc = ∆t0) could be rewritten as:

Pp = ηpν + νb − Pc (S41)

Pr = ηrν− Pc (S42)

Pc =
〈Nc〉

τ
= ηrνbνTc + ηpηrν (S43)

2. DEPENDENCE OF THE FISHER INFORMATION ON
DIFFERENT EXPERIMENTAL PARAMETERS

In this section, we study the ratio of the total Fisher information
ICDNC/ICDC (the Fisher information for the CDNC scheme over
the Fisher information for the CDC scheme) as a function of
the experimental parameters of target detection systems. The
analytical expression of ICDNC is given below. The expression
of ICDC is the same as ICDNC except for the CDC scheme ηr is
always zero.

ICDNC =
η2

r ν2τ

Pc
+

(1− ηr)2ν2τ

Pp
+

η2
r ν2τ

Pr
(S44)

ICDC =
ν2τ

Pp
(S45)
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Fig. S1. Left: Fisher information ratio between the CDNC scheme and the CDC scheme as a function of probe photon transmission
ηp and detected noise flux νb. The reference photon transmission ηr and probe source flux is taken to be 17.8% and 3.87MHz. Right:
Fisher information ratio as a function of reference photon transmission ηr and source photon flux ν. The probe photon transmission
ηp and detected noise flux νb is taken to be 3.87×10−5 and 0.4MHz.

The Fisher information ratio ICDNC/ICDC as a function of the
probe source flux ηp, noise photon flux νb, probe photon trans-
mission ηp and reference photon transmission ηr is shown in
figure(S1). The coincidence window Tc in both plots is taken
to be 200ps. As could be seen, the maximal enhancement is
achieved in low probe transmission ηp, hight noise νb regime,
highlighting the performance advantages of the CDNC scheme
in lossy and noisy environment. The ratio also increases as the
reference photon transmission ηr increase and the probe genera-
tion flux ν decrease.

3. SPDC PHOTON PAIR BANDWIDTH ESTIMATION

A joint spectral intensity measurement was performed to esti-
mate the bandwidth of SPDC photons, shown in Fig(S2). Each
photon is coupled into a 5km dispersive fiber, connected to a
single photon detector. Since light with difference frequencies
travels at different speeds in the fiber, due to dispersion, the
frequency of each individual photon can be calculated from the
detection time at the single photon detector[1]. The 80MHz laser
trigger is used as a fixed time reference. Fig. S2(b) shows the
joint spectral intensity measurement result. The SPDC band-
width is estimated to be more than 100nm.

4. COMPARISON BETWEEN CDNC AND PULSED CDC
SCHEME

In this section the performance of the CDC scheme with pulsed
probe light will be compared to the CDNC scheme with the
same average probe flux ν, average detected noise flux νb and
detector temporal resolution ∆t. For a CDNC scheme, the Fisher
information ICDNC is given by:

ICDNC = I(ν, νb, ηp, ηr, Tc, τ) (S46)

where Tc = ∆te f f ' 2∆t is taken to be the effective temporal
resolution. Then:

I(ν, νb, ηp, ηr, Tc, τ) = (
η2

r ν2

Pc
+

(1− ηr)2ν2

Pp
+

η2
r ν2

Pr
)τ (S47)

For a CDC scheme with pulsed probe photon and gated detec-
tion, it suffices to consider the set of the time intervals when the
gated detector is turned on. In the limit of pulse duration being
much shorter than the detector temporal resolution ∆t the gated
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Fig. S2. (a) Diagrammatic representation of the experimental
setup for joint spectral intensity measurements. LP: long-pass;
SMF: single-mode fiber; SPAD: single-photon avalanche diode;
TDC: time-to-digital converter. (b) Joint spectral intensity re-
sult.

detection window could be taken as ∆t. Then the total detection
time in the CDC scheme is just τCDC = frepτ∆t where frep is the
repetition rate of the probe pulses. It is obvious that such pulsed
CDC scheme is equivalent to a CDC scheme with CW probe
light but over shorter time τCDC and with a higher mean probe
flux νCDC = τ

τCDC
ν. Then the old analysis of the CDC scheme

applies. The Fisher information ICDC,pulsed is given by:

ICDC,pulsed = I(νCDC, νb, ηp, 0, 0, τCDC) (S48)

Figure (S3) shows the comparison between the performance of
the CDNC and pulsed CDC scheme in terms of the estimation
variance of the probe transmission ηp (the inverse of the Fisher
information). It could be seen that if the repetition rate frep
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Fig. S3. Estimation variance of the pulsed CDC scheme (grey line) as a function of the probe pulse repetition rate. The probe pho-
ton transmission is ηp = 3.3× 10−5. The average probe flux and noise flux are given by ν = 3.87MHz and νb = 0.4MHz. The red
and blue lines correspond to the CDNC scheme performance with reference photon transmission ηr = 17.8% and ηr = 100%. The
detector temporal resolution of both the CDNC and the CDC scheme is taken to be 100ps.

of the pulsed probe light is lower than a certain value, which
corresponds to a certain level of peak power, the pulsed CDC
scheme could perform better than the CDNC scheme.

5. AN EXAMPLE OF IMPROVED PHOTON DETEC-
TION TECHNIQUES: ENHANCING THE MEASUR-
ABLE TEMPORAL CORRELATION WITH DISPER-
SION CANCELLATION

In this section, we present an example of improved photon de-
tection techniques that can fully exploit the strong temporal
correlation of the SPDC photon pairs, without improving the
detector temporal resolution, to benefit practical target detection
protocols. The basic idea of this technique is inspired by the
non-local dispersion cancellation [2] and the schematic of the
experimental setup is shown in Fig. S4. The CW probe light
(collected with the telescope) and reference light are divided
into multiple pairs of probe-reference channels. In each pair of
the channels the probe light and the reference light could be
considered as pulsed. The duration of the pulses depends on
the parameters of the time-division multiplexer (TDM). The ref-
erence and probe photon will go through chromatic dispersion
of equal amount but opposite sign, before getting detected upon
the single photon detectors. The detectors have limited temporal
resolution ∆t = 50ps.

In this proof-of-principle example, we will focus on quanti-
fying the measurable temporal correlation between the probe
and reference photon in each channel pair. Therefore for the
conciseness of the analysis, the effect of the environmental noise
and loss is neglected. We further assume that before arriving at
the TDM, the probe and reference photons have traveled the
same optical distance, therefore a pair of probe and reference
photons will not be separated by the TDM (this condition is not
necessary for a physical implementation but it will help simplify
the analysis). Under these assumptions, the joint state of the
pulsed probe-reference photon pair in each probe-reference
channel pair (before going through the chromatic dispersion)
could be described as:

|pulsed pair〉 =
∫ ∫

f (tp, tr) exp(−iω0tp − iω0tr)a†
p(tp)a†

r (tr)dtpdtr

(S49)

where a†
p(tp), a†

r (tr) is the creation operator of the probe and the
reference photon at time tp, tr. The central frequency of both
photon are ω0. The joint temporal amplitude f (tp, tr) is assumed
to be Gaussian for simplicity of the analysis:

f (tp, tr) = C exp(−
(tp + tr)2

8σ2
+

−
(tp − tr)2

8σ2
−

) (S50)

where σ+ and σ− characterize the pulse duration and the mean
detection time difference (proportional to ∆t0) between the probe
and reference photons. The constant C is to ensure that f is
square normalized. The joint temporal amplitude fdispersd(tp, tr)
after applying opposite chromatic dispersion to the probe and
the reference photons is given by:

fdispersed(tp, tr) = F−1{exp(
i
2

β(2)lω2
p −

i
2

β(2)lω2
r )F [ f (tp, tr)]}

(S51)

= C exp((2
(

σ2
+ − σ2

−
)

trtp +
(

2iβ(2)l − σ2
− − σ2

+

)
t2
r (S52)

+
(
−2iβ(2)l − σ2

− − σ2
+

)
t2

p)/(8
(
(β(2)l)2 + σ2

−σ2
+

)
)) (S53)

where β(2) is the group velocity dispersion and l is the length
of the dispersive medium. The F and F−1 stand for the two
dimensional Fourier and inverse Fourier transform between
tp, tr and ωp, ωr. The joint temporal distribution JTI of the probe-
reference photon detection time is given by the mod-square of
fdispersed:

JTI = | fdispersed|2 (S54)

= |C|2 exp(−
(tp + tr)2

4( (β(2) l)2

σ2
−

+ σ2
+)
−

(tp − tr)2

4( (β(2) l)2

σ2
+

+ σ2
−)

) (S55)

The experimentally detected joint temporal distribution JTIdet is
a convolution between JTI and detector temporal response g(tp)
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Fig. S4. the schematic of the enhanced detection technique. TDM: time division multiplexer. SPADS: single photon avalanche
diodes.

and g(tr):

g(t) =
1√

2πσd
exp(− t2

2σ2
d
) (S56)

where σd characterize the temporal resolution of both the probe
and the reference detectors. Then:

JTIdet = |C|2 exp(−
(tp + tr)2

4( (β(2) l)2

σ2
−

+ σ2
+ + σ2

d )
−

(tp − tr)2

4( (β(2) l)2

σ2
+

+ σ2
− + σ2

d )
)

(S57)

With realistic experimental parameters, the simulated JTIdet with
dispersion β(2)l 6= 0 and without dispersion β(2)l = 0 is shown
in Fig. S5. As could be seen, introducing additional chromatic
dispersion could significantly increase the measurable temporal
correlation between the probe and the reference photon. This is
because the chromatic dispersion will broaden the individual
pulse shape of both the reference and the probe photon and
hence the stretch the joint probability distribution JTIdet to
a much wider extent. Then the effect of the detector time
uncertainty could be effectively minimized.

The temporal correlation measured from JTIdet could be quan-
tified in terms of the variance and the covariance between the
probe and reference photon detection time tp, tr [3]:

ρtp ,tr =
Cov(tp, tr)√

var(tp)var(tr)
=

(
(β(2) l)2

σ2
+σ2
−

+ 1)(σ2
+ − σ2

−)

(
(β(2) l)2

σ2
+σ2
−

+ 1)(σ2
+ + σ2

−) + 2σ2
d

(S58)

The dependence of the measured correlation ρtp ,tr on the amount
of chromatic dispersion is plotted in Fig. S5. The effective
temporal resolution is defined as the temporal resolution that is
required to achieve the same amount of measurable temporal
correlation without applying any dispersion. As could be seen
in Fig. S5, the improved detection technique could drastically
increase the measurable temporal correlation and decrease the
effective temporal resolution from 50ps to around 500fs. It
worth noting that if the detector temporal resolution is perfect
(σd = 0), the temporal correlation ρtp ,tr is not affected by the
chromatic dispersion, as could be seen in equation Eq. (S58).
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Fig. S5. Top: simulated joint temporal amplitude JTIdet with
dispersion (right, β(2)l = 1.147 × 10−22s2) and without
dispersion (left, β(2)l = 0). Detector temporal resolution
σd = 50ps, detection time difference (without dispersion):
σ− = 20fs, probe and reference pulse duration σ+ = 50ps.
Bottom: the dependence between the dispersion length
(β(2) = 2.294 × 10−26s2/m) and the temporal correlation
and the effective temporal resolution. Other parameters are
the same as the top plot.
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