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This document provides supplementary information to "State-independent quantum tomography by 
photon-number-resolving measurements," https://doi.org/10.1364/OPTICA.6.001356. In Section 1 
we provide an overview of our cavity-enhanced single-photon source. Section 2 discusses 
experimental calibrations and a model for loss analysis in the experiment. 

1. CAVITY-ENHANCED NARROWBAND HERALDED
SINGLE-PHOTON SOURCE

A. General model

Our single photon source is based on type-II spontaneous para-
metric downconversion (SPDC) in a periodically poled KTiOPO4
(PPKTP) crystal. A pump photon at ωp is downconverted
into a cross-polarized signal-idler photon pair at ωs,i, such that
ωp = ωs + ωi, and the presence of the signal photon is heralded
by detecting the idler photon [1]. All tomographic measure-
ments were therefore conditioned to the detection of an idler
photon. The SPDC Hamiltonian is given by [2, 3]

H ∝ ih̄χ(2)
∫

d3~r E(−)
p (~r, t)E(+)

i (~r, t)E(+)
s (~r, t) + H.c. (S1)

where χ(2) is the crystal’s nonlinearity and the fields in the
Heisenberg picture take the form,

E(−)
j=p,s,i(~r, t) = E(+)(~r, t)†

=
∫

dωj A(~r, ωj) âj ei[k j(ωj)r−ωjt], (S2)

where A(~r, ωj) is an approximately slowly varying amplitude
and âj is the annihilation operator for the mode of frequency
ωj. Solving for the state under the evolution of the Hamiltonian
in Eq. (S1) for low parametric gain regime and a non-depleted
classical pump yields the output quantum state

|ψ〉 =
∫

d3~ks,i dωs,i φ(~ks, ωs,~ki, ωi) â†
s â†

i | 0 〉s | 0 〉i (S3)

where φ(~ks, ωs,~ki, ωi) determines the spectral and spatial prop-
erties of the SPDC, depending on the pump field and the non-
linear crystal (phase matching bandwidth around~kp =~ks +~ki).
We can see from Eq. (S3) that the signal and idler photon pairs
are emitted in a multitude of spatial and spectral modes. There-
fore, any measurement on a particular idler mode will collapse
the quantum state given by Eq. (S3) to a mixture of signal-mode
states. As a result, the heralded signal state will not be a pure
quantum state, which limits its applications in quantum infor-
mation processing [4, 5]. This is because a nonzero vector phase-
mismatch can lead to a detected, heralding idler photon with
a “twin” signal photon completely out of alignment and there-
fore undetectable, even in the absence of losses, which greatly
diminishes the experimentally accessible quantum correlations.
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One therefore needs to emit photon pairs in the well defined
spatial and spectral modes which are optimally coupled to the
detectors. This involves spectral and spatial filtering and has
been widely studied both theoretically and experimentally [6–
11]. Our spectral and spatial filtering steps are discussed in the
next section.

B. Spectral and spatial filtering

Spectral and spatial filtering was achieved by using optical res-
onators: both actively, by placing the nonlinear crystal in a reso-
nant cavity — thereby building an optical parametric oscillator
(OPO) — and passively, by using a filtering cavity (FC) and an
interference filter (IF) after the OPO. The OPO was used in the
well-below-threshold optical parametric amplifier (OPA) regime.
The OPO cavity enhanced the SPDC at doubly resonant (signal
and idler) frequencies by a factor of the square of the cavity
finesse [12]. However, this enhancement was still masked by the
“sea” of nonresonant SPDC photons until we filtered the idler
with a short FC, which selected only one OPO mode, and with
an IF, which selected only one of the FC modes. After filtering,
we are allowed to consider the simpler OPA Hamiltonian

H = ih̄κ â†
s â†

i + H.c., (S4)

where κ is the product of the pump amplitude and χ(2). This
yields the well-known two-mode squeezed state

|ψ〉 = (1− ζ2)
1
2

∞

∑
n=0

ζn|n〉s|n〉i, (S5)

where ζ = tanh(κt). In the weak pump regime, both κt and
ζ � 1, and Eq. (S5) can be approximated by

|ψ〉 ' |0〉s|0〉i + ζ|1〉s|1〉i +O(ζ2) (S6)

A detection of a single photon in the idler mode thus projects
the signal mode into a single-photon state. Note that, since the
heralding process consists in postselection of the idler channel,
filtering losses in this channel are unimportant. Indeed, if the
pump power is kept low enough that practically no pairs from
different modes ever overlap in time, one can then reasonably
claim that the detected, the heralded signal photon will be the
twin of the filtered, heralding idler photon, as per Eq. (S6). It
is important to also note that the situation will change if one
seeks to herald a multi-photon state by using PNR detection for
heralding, as per Eq. (S5). In that case, losses in the heralding
channel cannot be tolerated as they will lead to errors.

2. EXPERIMENTAL CALIBRATIONS

A. Displacement calibration

The displacement operator was implemented by interfering the
OPO signal mode with a phase- and amplitude-shifted coherent-
state displacement field at a highly unbalanced beamsplitter
with a reflectivity r2 = 0.97. The interference visibility between
the seed OPO beam and the displacement field was 90%. The
amplitude shift |α| was effected by a homemade, temperature-
stabilized electro-optic modulator consisting in an X-cut, 20
mm-long rubidium titanyl arsenate (RbTiOAsO4) crystal; the
phase shift arg(α) was effected by a piezoelectric transducer-
(PZT) actuated mirror. Both the EOM and the PZT mirror were

driven by homemade, low-noise, high voltage drivers, fed by
computer-controlled lock-in amplifiers.

The amplitude displacement was varied in 20 steps from |α| = 0
to |αmax| = 0.796(7), fixed by the TES’ photon flux limit of 5
photons/µs. In order to probe the Wigner function over the
whole phase space, one needs to have a maximum displacement
amplitude of |α| =

√
7 , where the amplitude of the Wigner

function drops down to 10−4. It requires a PNR detector capable
of counting a mean-photon number of 1 + |α|2 = 8, where the
probability to detect photon numbers at or above n = 20 is less
than 10−4. While our set-up only allows us to resolve up to 5
photon counts in the continuous-wave regime, due to pile-ups
from our CW displacement field, other TES set-ups similar to
ours have been characterized with resolution up to 17 photons
in the pulsed regime [13].
The phase displacement was varied in 10 steps from 0 to 2π. The
amplitude steps |α| = √η|β|, where η is the overall detection
efficiency, were directly calibrated by comparing the TES photon
statistics to that of a Poisson distribution

P(n) = e−|α|
2 |α|2n

n!
, (S7)

with the OPO beam blocked. This allowed us to determine the
displacement amplitude

|α| =
[

2P(2)
P(1)

] 1
2

. (S8)

Note that this method requires the presence of 2-photon detec-
tion events, i.e., |αmin| ' 0.15 for the very first displacement
amplitude, besides the zero displacement for which we blocked
the displacement beam. Photon number statistics were averaged
over 2 seconds to ensure an average calibration accuracy

4|α| = 3× 10−3 (S9)

of the displacement amplitude. However, the error on the maxi-
mum displacement was somewhat larger

4|αmax| = 7× 10−3, (S10)

due to the photon pileups occurring at higher flux which make
the continuous-wave TES signals harder to analyze. We ob-
served the long-term power stability of the laser to be on the
order of 1% over an hour. The laser’s short-term intensity noise
was much lower as ensured by a built-in “noise eater” intensity
servo. Moreover, the temperature stability of the EOM was on
the order of 1 mK. Because of all this, we consider the error4|α|
on the displacement calibration to be valid over the course of
our data acquisition time of several minutes. The phase steps
were calibrated by scanning the interference fringe between the
OPO seed beam and the displacement field, which provided a
set of 10 voltage values for the PZT mirror. Experimental data
runs were conducted by scanning the amplitude at fixed phases,
with the phase PZT voltage being refreshed at every amplitude
EOM voltage step. For each point of the quantum phase space,
a continuous stream of data was acquired at 5 MS/s, digitized
using an PCI board, and stored for subsequent photon statistical
analysis. For each phase space coordinate, we acquired data for
3 seconds. As a result, for 10 phase and 20 amplitude scans the
whole data acquisition duration was about 10 minutes.

A detailed discussion of our data analysis of continuous-wave
photon counting can be found in our previous paper on coherent
state tomography using PNR measurements [14].
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B. Photon probability distributions versus displacement am-
plitude

Figure S1 displays the measured photon number distributions
for a heralded single-photon input when |α| = 0 (left) and 0.25
(right). For no displacement, the histogram reflects the exact
same measurement as in Table 1 and Eq. 8 in the main text,
and the result yields a compatible value of 0.58(2). The two-
photon counts are essentially absent, which results in a very
low second-order coherence g2(0) = 0.07(5). For |α| = 0.25, the
two-photon peak grows from the presence of the displacement
field. In both cases, the observations agree with the theoretical
distribution, calculated with η= 0.58. As expected, the single-

Fig. S1. Measured photon-number distributions, left: α = 0
and right : |α| = 0.25. Error bars (1σ) are calculated from the
statistics of the measurements.

photon component decreased while the vacuum and higher
photon components increased. It can be thought of as follows: If
we displace a pure single-photon state, then we obtain

D̂(α)|1〉 = D̂(α)â†D̂†(α)|α〉 = â†|α〉 − α∗|α〉.

Clearly, the first term has no vacuum component, as does the
initial state |1〉, but the second term does have a vacuum com-
ponent. Therefore, the displacement of a single-photon state
increases its vacuum component probability amplitude, some-
what unintuitively. In the case where our initial state is a mixture
of vacuum and single-photon, then it can be seen that for low
enough displacement amplitudes, the vacuum component still
increases from its previous value. As the displacement becomes
large, the vacuum component will eventually decrease.

C. Model Wigner function and loss analysis

Before we turn to the tomography results, we outline the Wigner
function model that accounts for the aforementioned nonideal
system detection efficiency. There are several sources of losses in
our experiment: photon absorption and general scattering out
of the mode due to mismatch. As mentioned above, losses in the
heralding channel can be factored out in the generation of a her-
alded single-photon state provided that the OPO output never
contains more than one photon per mode during the detection
window, which was the case in this work.
It is also important to note that the TES fiber is single-mode at
telecom wavelengths but not at our operating wavelength of
1064 nm. Hence we need to address the possibility of multimode
coupling into the TES fiber. A simple reasoning shows that this

is not a matter of concern if there are no losses in the fiber. In-
deed, the coupling of the input field into each of the different,
orthogonal propagation modes of the fiber can be accurately
described by as many beamsplitting operations into distinguish-
able outputs. While each of these beamsplitting operations does
bring in vacuum fluctuations, all beamsplitter outputs are still
detected and the final TES detection is simply that of the to-
tal photon number of all the fiber modes. In the absence of
losses, the multimode fiber is a passive optical element which
conserves the total photon number and the final total photon
number measurement must therefore give the same exact result
as the initial one, before the quantum light is coupled into the
fiber. An argument could be made that fiber losses could be
mode dependent, with higher-order modes being more likely
to leak out of the fiber; we assume that this is negligible in our
case because the operating wavelength was close enough to the
specified single-mode wavelength that the mode order should
not be that high.
We measured the coupling efficiency, ηOFC, into the TES fiber on
the optical table by cleaving the fiber to insert a power meter and
re-fusing it to the TES thereafter. To minimize the coupling to
higher modes, we optimized our fiber coupling to as high as 90%
with the seed beam (discussed in the “spectral and spatial filter-
ing” section above) and we also measured the intensity varia-
tions of about one percent at the output of the fiber. This ensures
that most of the fiber coupling was to the fundamental mode of
the fiber. However, we didn’t measure the overall fiber trans-
mission into the TES cryostat. This was bundled with the TES
quantum efficiency in ηTES, which was inferred from all other
measured efficiencies, as summarized in Table S1. We modeled

ηTES ηOT ηBS ηOFC η

0.71(3) 0.93(1) 0.97(1) 0.90(2) 0.58(2)

Table S1. ηTES: TES quantum efficiency (including fiber trans-
missivity); ηOT : optical transmission of single-photon signal
field from the OPO to the displacement operation; ηBS: dis-
placement beamsplitter transmissivity; ηOFC: optical fiber
coupling. The overall efficiency η = ηTES × ηOT × ηBS × ηOFC.

losses by considering a fictitious beamsplitter of transmissivity
η and reflectivity (1− η), placed between the displacement and
a detector of unity efficiency as shown in Fig.S2. The input state
of this system is

Fig. S2. Loss model. The beamsplitter transmission and reflec-
tion coefficients are

√
η and

√
1− η respectively.

ρ̂in = |1〉a a〈1| ⊗ |0〉b b〈0|. (S11)

After applying the displacement D̂a(β) and beamsplitter Ûab
operators we obtain the reduced, detected density operator by
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tracing out the vacuum mode

ρ̂out = Trb

[
ÛabD̂(β)|1〉a a〈1| ⊗ |0〉b b〈0|D̂†(β)Û†

ab

]
(S12)

= D̂(
√

ηβ) [η|1〉a a〈1|+ (1− η)|0〉a a〈0|] D̂(
√

ηβ)†. (S13)

From Eq. (S13) we can see that displacement by β followed by
losses η is essentially the same as introducing losses first by
mixing the pure single-photon state with vacuum, and then
applying a displacement by the reduced amount

√
ηβ. Due to

the linearity of the Wigner function, Eq. (S13) shows that the
experimentally reconstructed Wigner function will in fact be

W(q, p) = ηW|1〉〈1|(q, p) + (1− η)W|0〉〈0|(q, p). (S14)

As expected, losses (1-η) add a Gaussian vacuum function to the
original nonpositive Wigner function of the single-photon state.
In particular, the undisplaced photon-number distribution will
yield the overall transmissivity of the whole experiment η, as in
Fig.S1, left.
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