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Microwave-to-optical conversion using lithium
niobate thin-film acoustic resonators
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CLEAVEN CHIA1, AMIRHASSAN SHAMS-ANSARI1, CHENG WANG1,4, MIAN
ZHANG1,5, KEJI LAI3, AND MARKO LON AR1,7

This document provides supplementary information to "Microwave-to-optical conversion using 
lithium niobate thin-film acoustic resonators," https://doi.org/10.1364/OPTICA.6.001498. It provides 
details of numerical simulations of acousto-optic interactions, dynamics of the acousto-optic cavity, 
and calculations of the acousto-optic coupling and conversion efficiencies.

1. NUMERICAL SIMULATION OF THE ACOUSTO-OPTIC
INTERACTION

We perform a 2D numerical simulation of our device cross-
section (Fig. S1(a)) using COMSOL Multiphysics. Optical and
acoustic modes are simulated independently and the acousto-
optic interactions are then calculated by the integral of acoustic
and optical fields using corresponding nonlinear coefficient ma-
trices.

A. Simulation of optical and acoustic modes
The single-mode optical waveguide of our device supports fun-
damental TE and TM modes (Fig. S1). The electric field profiles
of the optical modes are used in the calculation of the acousto-
optic interaction.

The simulation of the acoustic mode includes strain, elec-
tric field, and the piezoelectric effect. Multiple acoustic modes
with gigahertz resonant frequencies are found in the eigenmode
simulation. We plot only a few acoustic modes in Fig. S2. The
electrical excitation of these acoustic modes are enabled by the
interdigital transducers (IDTs).

B. Calculation of acousto-optic interactions
The acousto-optic interactions are calculated by integrating the
optical and acoustic modes with matrices that describe moving
boundary, photoelastic and electro-optic effects. Calculations
here are based on theory formulated in previous works [1–4].
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Fig. S1. (a) Device structure for 2D numerical simulation. (b),
(c) Optical electric field of the fundamental TE and TM modes,
respectively.

In our work, the acousto-optic interactions are described by
the change of optical mode index due to the acoustic mode.
The acoustic mode amplitude α, defined by the maximum dis-
placement, is normalized to a single phonon occupation of the
acoustic resonator using h̄Ω = 1

2 meffΩ2α2, where Ω is the acous-
tic frequency. The effective mass meff of the acoustic mode is
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Fig. S2. Strain and electric field of three simulated acoustic modes with resonant frequencies of 1.55, 2.40, and 3.24 GHz. The color
map is independently normalized for each simulation.

given by

meff = La

∫
D

ρ Q(r)2dr
/

max
D

(
Q(r)2

)
, (S1)

where D defines the 2D simulation domain and the coordinate
variable r ∈ D. La is the length (perpendicular to the simulation
cross-section) of the acoustic resonator, ρ is material mass density,
and Q is the displacement field.

The electric field of the optical mode is denoted as E, s refers
to strain, and E refers to the electric field of the acoustic mode.
The mode index modulated by the moving boundary effect is
given by

∆n0,MB = −n
2

∮
(Q · n̂)

(
E∗‖∆εE‖ − D∗⊥∆ε−1D⊥

)
dS∫

E∗εEdr
, (S2)

where n is the optical mode index, n̂ is the normal vector of the
boundary facing outward, and D is the electric displacement
field of the optical mode. The subscripts ‖ and ⊥ indicate the
parallel and perpendicular components to the boundary. The
permittivity for the optical electric field is denoted as ε, while
∆ε = εLN − εair, and ∆ε−1 = ε−1

LN − ε−1
air .

The mode index modulated by the photoelastic effect is given
by

∆n0,PE =
ε0n5

2

∫
dr
(

E∗x E∗y E∗z
)

dB1 dB6 dB5

dB6 dB2 dB4

dB5 dB4 dB3




Ex

Ey

Ez


∫

E∗εEdr
,

(S3)
where ε0 is the vacuum permittivity, and Bk (k = 1 − 6) is
the optical indicatrix. The changes of indicatrix coefficient dBk
(k = 1− 6) due to the strain sk (k = 1− 6) is given by

dB1

dB2

dB3

dB4

dB5

dB6


=



p33 p31 p31 0 0 0
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s5
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
.

(S4)

where pjk are the primary elasto-optic coefficients in the condi-
tion of a constant electric field for lithium niobate (LN), where
the secondary effect via piezoelectricity and electro-optics is ex-
cluded [5, 6]. The photoelastic matrix is rotated according to
the crystal orientation in our device – X-cut thin-film LN with
acoustic wave propagating in the Z direction of the crystal. The
coordinate representations for the simulation and crystal are
shown in Fig. 2(a).

The mode index modulated by the electro-optic effect ∆n0,EO
is of the same form of Eq. S3, with the changes of indicatrix
coefficients [4] given by
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
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
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 , (S5)

where rjk is the primary electro-optic coefficients in the condition
of constant strain in which secondary effects via piezoelectricity
and photoelasticity is excluded. The above matrix is rotated
according to the crystal orientation in our device.

The overall relative refractive index change due to a single
phonon is given by,

∆n0,tot = ∆n0,MB + ∆n0,PE + ∆n0,EO. (S6)

C. Calculation of Vπ L
The half-wave-voltage-length product Vπ L, characterizing the
modulation efficiency, defines the voltage that is required to
achieve a π phase shift for a modulation length L. Here, we
derive the Vπ L from the simulated refractive index changes
with additional information on Q factors and coupling of the
acoustic resonator. While the overall refractive index change in
Eq. S6 quantifies the optical phase shift (or index change) due
to a single phonon in the acoustic resonator, one must relate the
in-cavity phonon number to the applied microwave power. As
discussed later in Sec. 3, the in-cavity phonon number is given
by

Npn =
4γe

γ2 Nin =
4γe

γ2
Pin

h̄Ωm
, (S7)
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Table S1. Numerical simulation results of acousto-optic interactions

Optical
mode

Acoustic
mode freq. ∆n0,MB ∆n0,PE ∆n0,EO ∆n0,tot MZI AO cavity

Vπ L Vπ g0

GHz ×10−12 ×10−12 ×10−12 ×10−12 V·cm V kHz

TE 1.55 0.36 1.40 30.5 32.26 0.0692 6.92 0.5

TE 2.17 -0.84 1.11 71.43 71.70 0.0436 4.36 1.1

TE 2.40 -0.80 -5.08 23.06 17.17 0.2009 20.1 0.27

TE 3.16 -3.07 41.68 26.38 64.99 0.0703 7.03 1.0

TE 3.24 -4.24 47.84 58.91 102.5 0.0454 4.54 1.6

TM 1.55 4.19 24.29 -8.79 19.69 0.113 11.3 0.3

TM 2.17 8.39 67.97 -24.03 52.33 0.0599 5.99 0.8

TM 2.40 0.87 22.26 -9.37 13.72 0.2505 25.1 0.2

TM 3.16 15.09 42.06 -4.28 52.87 0.0863 8.63 0.8

TM 3.24 21.03 70.63 -15.75 75.90 0.0616 6.16 1.2

where Nin = Pin
/

h̄Ωm is the phonon input rate with the reso-
nant frequency Ωm of the acoustic mode and input power Pin.
The decay are and external coupling rates of the acoustic mode
is γ and γe, respectively. Given the input impedance Rin = 50Ω,
the relation between input power and peak voltage Vp is given
by

Pin =
1
2

V2
p

Rin
. (S8)

The number of in-cavity phonons Npn required for a π phase
shift is given by,

2π

λ
∆n0,tot

√
NpnL = π (S9)

where λ is the optical wavelength. Taking Eqs. S7 and S8 in to
Eq. S9, we derive the Vπ L of the device:

Vπ L =
λ

2∆n0,tot

√
γ2h̄ΩmRin

2γe
. (S10)

D. Calculation of acousto-optic single-photon coupling
strength g0

For our thin-film acoustic resonator that is coupled to an opti-
cal racetrack cavity, the acousto-optic single-photon coupling
strength g0 can be derived using the 2D simulation results using

g0 = ω0ηcav
∆n0,tot

n
, (S11)

where ω0 is the optical resonant frequency, and ηcav is the ratio
of waveguide length in the acoustic resonator to that of the
racetrack cavity.

E. Estimate Vπ L and g0 using the numerical simulation results
We estimate the Vπ L for the Mach–Zehnder interferometer (MZI)
and g0 for the acousto-optic cavity from simulation. To be con-
sistent with the experiments, the typical measured acoustic Q

factors Qm = 2, 000 (γ = Ωm/Qm) and γe/γ = 0.15 (corre-
sponding to a 3 dB dip in S11 measurements) are employed in
the following calculation. The length of the acoustic resonator
(in direction perpendicular to the simulation cross-section) is
La = 100 µm. The output impedance of the microwave source
is Rin = 50 Ω. For the acoustic-optic cavity shown in Fig. 1, the
relative length of the optical waveguide in the acoustic resonator
is ηcav = 0.15. Table S1 summarizes the interactions between
optical modes and acoustic modes.

2. DERIVATION OF Vπ FROM EXPERIMENTAL MEA-
SUREMENTS

A. Acousto-optic Mach-Zehnder interferometer
Here we relate the half-wave voltage Vπ to the measured opto-
acoustic S21 for the acousto-optic MZI. The phase modulation of
one optical path is given by

Ep1(V) =
E0√

2
exp (iπV/Vπ + iφb) , (S12)

where E0 is the input optical field of the MZI, φb is the bias phase
between two optical paths, and V is the applied voltage. The
other optical path of MZI is not modulated, and the optical field
is given by Ep2(V) = E0/

√
2. The optical field at the output of

the MZI is given by

Eout(V) =
Ep1(V) + Ep2(V)

√
2

=
E0
2

(1 + exp (iπV/Vπ + iφb)) .

(S13)

The output optical power is thus given by

Iout(V) ∝ E∗out Eout

=
|E0|2

2
(1 + cos (πV/Vπ + φb)) .

(S14)

The optimum microwave to optical conversion occurs at the
bias phase φb = π/2, which corresponds to the output intensity
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at half maximum. Measured using a potodetector, the opto-
acoustic S21 for small input signal is given by

S21 =

(
πRPD Irec

Vπ

)2
, (S15)

where Irec is the DC optical power received at the photodetector,
and RPD is sensitivity of the photodetector. Using Eq. S15, we
can derive Vπ of the acousto-optic MZI by the opto-acoustic S21
measurements.

B. Acousto-optic cavity

Our acousto-optic cavity operates in the sideband resolved
regime, that is the frequency of the microwave signals are greater
than the decay rate of the optical mode. For a weak microwave
signal, the optical transmission is thus close to unitary at the
optimum conversion wavelength, which corresponds to that
detuned from the optical resonance by the microwave frequency.
Phenomenologically, this can be understood as the light being
reversibly pumped into, and out of, the optical cavity due to the
acoustic modulation. Thus, we consider the acousto-optic cavity
as an intensity modulator and the relation in Eq. S15 is also used
to derive the effective Vπ .

3. CONVERSION BETWEEN MICROWAVE, ACOUSTIC,
AND OPTICAL FIELDS IN ACOUSTO-OPTIC CAVITY

A. Dynamics of acousto-optic cavity

Here we consider an acousto-optic system with an acoustic res-
onator driven by a microwave signal through the piezoelectric
effect. The Heisenberg-Langevin equations of motion for an
optical cavity a coupled to an acoustic resonator b are given by

ȧ = −
(

i∆ +
κ

2

)
a− ig0a

(
b + b†

)
+
√

κeain (S16)

ḃ = −
(

iΩm +
γ

2

)
b− ig0a†a +

√
γebin, (S17)

where a and b are the annihilation operators of optical and acous-
tic modes, respectively, g0 is the single-photon coupling strength
between the optical and acoustic resonators, ∆ = ω0 −ωp is the
optical detuning with the pump laser frequency ωp, the optical
resonant frequency is ω0, κ = κi + κe is the loss of optical mode
with intrinsic loss κi and external coupling rate κe, Ωm is the
acoustic resonant frequency, γ = γi + γe is the loss of acoustic
mode with intrinsic loss γi and external coupling rate γe, and ain
and bin are the optical and microwave input field, respectively.

To solve the equations of motion, we consider a single fre-
quency microwave driving bin of the acoustic resonator given
by

bin = Bine−iΩdt, (S18)

where Ωd is the driving frequency, Bin is the amplitude of the
input field, and the input microwave power is Pin = h̄Ωm |Bin|2.
In the weak optical mode limit, i.e. g0a†a � Ωm, the optical
back action term (ig0a†a in Eq. S17) on the acoustic resonator is
neglected. Taking Eq. S18 into Eq. S17, the acoustic amplitude b
is solved using

b = Be−iΩdt

B =

√
γe

i (Ωm −Ωd) +
γ
2

Bin.
(S19)

For a resonant microwave drive (Ωm = Ωd), the in-resonator
phonon number Npn is related to the input microwave power by

Npn = B2

=
4γe

γ2 B2
in

=
4γe

γ2 Nin

=
4γe

γ2
Pin

h̄Ωm
.

(S20)

Taking Eq. S19 into Eq. S16, the equation of motion for the
optical mode is re-written as

ȧ = −
(

i∆ +
κ

2

)
a− iG 2 cos (Ωdt) a +

√
κeain, (S21)

where G = g0B is the frequency shift of optical mode due to the
acoustic field that is present.

B. Optical transmission with active acoustic driving

We numerically solve Eq. S21 to investigate the optical transmis-
sion spectra with various microwave input powers. We note
that the Eq. S21 assumes a weak optical input and a linear acous-
tic resonator. The normalized optical transmission T under a
continuous optical pump ain is given by

T = |ain −
√

κea|2
/
|ain|2 . (S22)

As the optical mode is being modulated by an acoustic mode
at microwave frequency Ωd, the optical transmission T is ex-
pected to associate an oscillation at the same as well as higher
order frequencies due to nonlinearity. However, in experiment,
the optical transmission spectra are captured by a low frequency
(10 MHz) data acquisition card, which does not respond to giga-
hertz frequencies. Numerically, we use an average to calculate
the quasi-DC component of the optical transmission using

TDC =
1

∆t

∫ t1+∆t

t1

dτT(τ), (S23)

where time t1 is set to be greater than the initial stabilization time
in numerical calculation of a, and the average time window ∆t is
chosen to be the integer periods of the driving signal, i.e. N/Ω.

The numerically-calculated optical transmission spectra
(Fig. S3) exhibit sidebands in agreement with the experimen-
tal measurements in Fig. 3 in the main text.

C. S parameter of acousto-optic cavity

The parameter S21 is defined as the normalized microwave
power generated by the receiving photodetector, which is gener-
ated by beating the pump laser and the optical sideband at the
photodetector. To derive the power in the optical sideband, we
decompose the optical amplitude a into a series of sidebands:

a = ∑
q

Aqe−iqΩdt, (S24)

where Aq is the amplitude of optical sideband of order q. At
the weak microwave input power (i.e. G � κ) limit and in the
sideband resolved regime (i.e. Ωm � κ), we only consider the
first order of optical sidebands, i.e. q = 0,±1 and, for simplicity,
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Fig. S3. Numerically calculated optical transmission spectra of
acousto-optic cavity with microwave input powers from 0 to 5
mW.

we write the amplitude as, A0, A+, A−. The Eq. S21 is thus
decomposed into sidebands,

0 = −
(

i∆ +
κ

2

)
A0 − iG (A+ + A−) +

√
κe Ain

−iΩm A+ = −
(

i∆ +
κ

2

)
A+ − iGA0

iΩm A− = −
(

i∆ +
κ

2

)
A− − iGA0,

(S25)

where Ain is the input optical amplitude. The solution of Eq. S25
is given by

A0 =

√
κe Ain(

i∆ + κ/2 + G2
(

1
i(∆−Ωd)+κ/2 + 1

i(∆+Ωd)+κ/2

))
'
√

κe Ain
(i∆ + κ/2)

(S26)

A+ =
−iGA0

i (∆−Ωd) + κ/2
(S27)

A− =
−iGA0

i (∆ + Ωd) + κ/2
(S28)

For the scenario the pumping laser is blue detuned from
the optical resonance by the acoustic resonant frequency (∆ =
−Ωm), and the microwave input is on resonant with the acous-
tic mode (Ωd = Ωm), the in-cavity optical amplitude for the
enhanced sideband A− is given by,

A− =
−iG
√

κe Ain
(−iΩm + κ/2) κ/2

, (S29)

where acousto-optic coupling strength G = g0B =
2g0Bin

√
γe/γ.

Since the pump laser is detuned from the resonant, the trans-
mitted amplitude of the pump laser is close to the input Ain.

The output microwave voltage U from the photodetector caused
by the beating between the transmitted pump laser and the
generated optical sideband given by

U = RPD h̄ω |
√

κe A−Ain|

= RPD
Gκe Iopt

κ
√

Ω2
m + κ2/4/2

' RPD
Gκe Iopt

Ωmκ/2
,

(S30)

where optical power Iopt = h̄ω0 A2
in, ω0 is the optical frequency,

and RPD is the response of the photodetector in the unit of V/W.
The output microwave power is then given by

Pout =
U2

2Rload

=
2G2κ2

e R2
PD I2

opt

Ω2
mκ2Rload

,

(S31)

where Rload = 50 Ω is the impedance of the network analyzer.
The opto-acoustic transmission S21 is given by

S21 = Pout/Pin

=
8g2

0γeκ2
e R2

PD I2
opt

h̄γ2Ω3
mκ2Rload

(S32)

D. Estimation of acousto-optic single-photon coupling
strength g0 from experimental measurements

Using the experimental results of the acousto-optic cavity (Fig. 3
in the main text), we can extract the single-photon coupling
strength g0 using Eq. S32. Taking the insertion loss of the chip
into account, the input optical power Iopt in Eq. S32 is replaced
by the power received at the photodetector Irec.

We extract the acousto-optic coupling strength g0 = 1.1 kHz
from the experimental results shown in Fig. 3 and summarized
in Table S2. We note this experimentally-extracted g0 is in good
agreement with the numerically-simulated value (TE mode, 2.17
GHz) in Table S1. The discrepancy of the acoustic resonant
frequency between the numerical simulation and experimental
measurement may due to the deviation in LN film thickness and
etching depth in fabrication.

E. Photon number conversion efficiency
The photon number conversion efficiency η relates the number
of generated optical sideband photons coupled out of the cavity√

κe A− to the input microwave photons. For weak microwave
input signals, the conversion efficiency η is given by

η =

∣∣∣∣√κe A−
Bin

∣∣∣∣2
=

16g2
0γeκ2

e Iopt

h̄ω0Ω2
mγ2κ2

=
4g2

0
γ κ
·

κe Iopt

Ω2
m h̄ω0

· 2γe

γ
· 2κe

κ

= C0 · ncav ·
2γe

γ
· 2κe

κ
,

(S33)

where C0 = 4g2
0/(γκ) is the single-photon cooperativity, ncav =

κe Iopt/(Ω2
m h̄ω0) is the intracavity photon number of the blue-

detuned pump light, 2κe/κ is the external coupling efficiency of
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the optical mode, and 2γe/γ is the external coupling efficiency
of acoustic mode by the IDT.

Using the experimentally-extracted values summarized in
Table S2, we estimate a single-photon cooperativity of C0 =
4× 10−8. At an optical power of 1 mW, where the intracavity
photon number is only about 4,400 due to the large detuning
of ∆ = −Ωm from the optical resonance, the photon number
conversion efficiency is η = 0.0017%.

Table S2. Estimation of acousto-optic single-photon coupling
strength g0 using experimental results

Parameter Value

Optical mode TE

ω0/ 2π 200 THz

κ/ 2π 95 MHz

2κe/κ 0.3

γ/ 2π 1.28 MHz

2γe/γ 0.34

Ωm/ 2π 2.007 GHz

RPD 800 V/W

Irec 0.128 mW

Rload 50 Ω

S21 -7.5 dB

g0/ 2π 1.1 kHz

4. MICROWAVE MICROSCOPY OF ACOUSTIC MODES

We experimentally investigate the acoustic mode profiles us-
ing transmission-mode microwave impedance microscopy [7, 8].
The working principle is the following – while the acoustic res-
onator is driven by a microwave input on the IDT, a probe for
atomic force microscopy is scanning over the acoustic resonator
and measuring any microwave electric signals. The detected
signal is mixed with the driving signal to extract the relative
amplitude and phase of the acoustic electric field. The electric
amplitude profile of an acoustic mode is obtained on the top sur-
face and in agreement with the numerical simulation (Fig. S4).
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