
Real-time observation of electronic, vibrational, and 
rotational dynamics in nitric oxide with attosecond 
soft X-ray pulses at 400 eV: supplementary material  
NARIYUKI SAITO,1,* HIROKI SANNOHE,1 NOBUHISA ISHII,2 TERUTO KANAI,1 
NOBUHIRO KOSUGI,3 YI WU,4 ANDREW CHEW,4 SEUNGHWOI HAN,4 ZENGHU 
CHANG,4 AND JIRO ITATANI1  
1The Institute for Solid State Physics, the University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8581, Japan. 
2Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto 
619-0215, Japan 
3Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan. 
4Institute for the Frontier of Attosecond Science and Technology, CREOL and Department of Physics, University of Central Florida, 4111 Libra 
Drive, PS430, Orlando, FL 32816, USA. 
*Corresponding author: nariyuki.saito@issp.u-tokyo.ac.jp 

  

Published XX Month XXXX  
This document provides supplementary information to "Real-time observation of electronic, vibrational, and 
rotational dynamics in nitric oxide with attosecond soft X-ray pulses at 400 eV.” 

http://dx.doi.org/10.1364/optica.99.099999.s1 [supplementary document doi]

1. EXPERIMENTAL SETUP A detailed schematic of the TAS beamline is presented in Fig. S1. The IR pulses obtained from the BiB3O6-based optical parametric chirped-pulse amplifier (1.6 µm, 10 fs, 1.5 mJ, 1 kHz) are split into pump and probe arms by a beam splitter. The pump and probe arms contain 10% and 90% of the total pulse energy, respectively. In the probe arm, the IR pulses are focused by a lens (f = 50 cm) into a semi-infinite helium gas cell (2.4 bar) to generate SX HHs. A two-stage differential pumping system after the gas cell using two dry pumps (500 l/min.) reduces the gas pressure in the subsequent vacuum chambers in the beamline. The SX pulses are passed through an aluminium filter (150 nm) to remove the fundamental IR component and focused into an NO gas cell (0.1 bar, 1.5 mm thick) by a toroidal mirror (4f = 2 m). The SX pulse 

duration is estimated to be ~200 as by SFA calculation. The pump IR pulses are recombined with the probe SX pulses by a hole-drilled mirror and collinearly focused into the NO gas cell by a lens (f = 25 cm). The IR intensity is estimated to be ~1×1014 W/cm2. The delay between the SX and IR pulses is scanned by a piezo stage. In the attosecond TAS measurement (Fig. 2 in the main text), the delay is controlled to a precision of ~30 as with a feedback system using a HeNe laser which propagates collinearly with the SX and IR pulses [S1]. The SX spectra are recorded by a spectrometer consisting of a slit (50 µm), a flat-field grating (Shimadzu, 2400 l/mm), and a back-illuminated X-ray CCD camera (Andor, Newton SO). The photon flux at 400 eV at the CCD is ~80 photons/s/eV. 
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