
This document provides supplementary information to "Distributed cladding mode fiber-optic sensor," 
https://doi.org/10.1364/OPTICA.377610. Mathematical analysis of random-access, dynamic and localized 
coupling of light the cladding modes of a standard optical fiber is provided. Coupling is based on the 
stimulation of Brillouin dynamic gratings by two pump tones that counter-propagate in the core mode 
of the fiber. A third optical probe wave may be reflected by the dynamic grating into a counter-
propagating cladding mode. Phase matching and spatial overlap considerations are discussed, and 
expressions for the magnitude and spectrum of coupling are obtained. The localization of dynamic gratings 
through phase coding of the pump waves is briefly reviewed. 

1. Coupling to cladding modes of a standard single-
mode fiber using Brillouin dynamic gratingsLet ( )pump1 , ,E r z t  denote the optical field of a first continuouspump wave, propagating in the single core mode of a standard fiber in the positive ẑ  direction: 
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Here r  and z  denote the radial and axial coordinates within the fiber, t  stands for time, pump1 pump1, kω  are the temporal frequency and axial wavenumber of the optical field, and ( )coreu r  (in units of m-1) is the transverse profile of the core mode. The transverse profile is radially-symmetric, and normalized so that 
( ) 2
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= . Last, ( )pump1A z  (in V) represents the local complex magnitude of the first pump wave. A second, co-polarized and continuous optical pump field is counter-propagating in the core mode, in the negative ẑ  direction: 
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In Supplementary Equation (S2), ( )pump2A z  represents the complex magnitude of the second pump wave, and pump2k  is its wavenumber. The optical frequency of the second pump wave is given by pump2 pump1ω ω Ω= − , where Ω  is close to the Brillouin 

frequency shift BΩ in the fiber. We denote the effective index ofthe core mode as coren , so that pump1,2 core pump1,2k n cω=  where cis the speed of light in vacuum. We assume that coren  is the same for all frequencies of interest.  Backward stimulated Brillouin scattering (SBS) interaction between the two pump fields generates a longitudinal acoustic wave of density fluctuations ( ), ,r z tΔρ , which is co-propagating with pump1E [S1]:  
( ) ( ) ( ) ( )ac, , , exp j j .r z t B z qz t u r c cΔρ Ω Ω= − + . (S2) 

Here pump1 pump2q k k= + is the acoustic wavenumber and 
( )acu r  is the transverse profile of a longitudinal acoustic mode that is guided by the core of the fiber, normalized to 
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= . The transverse profile of the electrostrictive force induced by the two pump waves is radially-symmetric, hence the stimulated acoustic mode must maintain the same symmetry. The magnitude of the acoustic wave, in units of kg×m-2, is given by [S1]:  
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In Supplementary Equation (S4) 0ε is the vacuum permittivity, 
eγ is the electrostrictive constant of silica, and BΓ ≈ 2π×30 MHz represents the Brillouin linewidth in silica. coreQ  [m-1] denotes the spatial overlap integral between the transverse profile of the optical intensity in the core mode and that of the acoustic mode:  
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≡  (S4) Consider next a third continuous optical probe wave, which is co-propagating with pump1E  in the core optical mode of the fiber: 
( ) ( ) ( ) ( )probe probe probe probe core, , exp j j .E r z t A z k z t u r ccω= − + (S5) The complex magnitude of the probe wave is denoted by  

( )probeA z , its optical frequency is probe pump1ω ω> , and its wavenumber probek equals probe core probek n cω= . The combination of the probe optical field and the stimulated acoustic wave is associated with a nonlinear polarization term at optical frequency probeω Ω− , due to photo-elasticity [S1]: 
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Here 0ρ  is the density of silica. Note that ( )probe 0k q− < , hence the nonlinear polarization represents a wave perturbation propagating in the negative ẑ  direction. The above nonlinear polarization can lead to scattering of the probe wave into a counter-propagating, fourth optical field of frequency probeω Ω− , provided that its wavenumber matches that of Supplementary Equation (S7). This requirement can be satisfied in the mth-order cladding mode of the fiber, with effective index ( )

clad core
mn n< , if the following condition is met:  
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Based on Supplementary Equation (S8), Brillouin dynamic grating (BDG) coupling to the cladding mode is optimal for the following optical frequency of the probe wave: 
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which is also Equation (1) in the Main Text. Note that the second term in the numerator of Supplementary Equation (S9) is smaller than the first by seven orders of magnitude, hence the approximation made is a very good one. The frequency detuning between the co-propagating pump and probe waves at optimal coupling is given by: 
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Supplementary Fig. 1 shows the calculated ( )
clad
mn  for a 125 µm-diameter fiber in air [S2], and the optimal wavelength offset between the probe and a pump waves at 1550 nm, as functions of the cladding mode order m. 

Supplementary Fig. 1. – Calculated effective index ( )
clad
mn  (left axis), and wavelength offset between pumps and probe at maximum coupling of the probe wave to cladding modes (right axis, based on Supplementary Equation 10), as a function of cladding mode order m. A bare fiber with air outside the cladding is assumed. The cladding diameter is 125 µm. The scattered field in the cladding mode may be expressed as: 
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where ( ) ( )clad
mA z  is the complex magnitude of the scattered field and ( ) ( )clad

mu r  is the normalized transverse profile of the mth-order cladding mode. The transverse profile of the cladding mode follows the radial symmetry of the optical core mode and the acoustic mode. The coupled nonlinear wave equations for the evolution of ( )probeA z  and ( ) ( )clad
mA z take up the following form:  
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Here we use ( )

clad core
mn n n≈ ≡  and ( )probe probeω Ω ω− ≈ . The term ( )

clad/core
mQ  [m-1] stands for the spatial overlap integral between the transverse profiles of the core, cladding and acoustic modes:  
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Lastly, the wavenumber mismatch term in Supplementary Equations (S12) and (S13) is defined as:  
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For brevity, we rearrange the coefficients of Supplementary Equations (S12) and (S13):  
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where BΔΩ Ω Ω≡ − , and:  
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≡ (S17) We assume further that the two pump waves are undepleted in the short fiber under test. With the above definitions, we may rewrite Supplementary Equations (S12) and (S13): 
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Due to the short lengths of fiber used, and the small spatial overlap between core and cladding modes ( )

clad/core
mQ , the coupling of power between probeE and ( )

clad
mE  is very weak. Although

2 2

probe pump1,2A A<< , we may still assume that changes in probeAremain small (although nonzero). At that limit, the magnitude of the optical field that is coupled into the cladding mode by a BDG of length BDGL  is approximately given by: 
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The optical power coupled to the cladding mode is given by 
( ) ( ) 2

clad,out 0 clad,out2m mP nc Aε=  (see [S3]):  
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Here 2

probe 0 probe2P nc Aε=  is the input power of the probe wave, and 2

pump1,2 0 pump1,22P nc Aε=  are the input powers of the two pump waves. The reflected power obtains a maximum value when the frequency offset Ω  between the two pump waves matches exactly the Brillouin frequency shift BΩ  ( 0ΔΩ = ), and the frequency of the probe equals ( )
probe,opt
mω ( ( )

BDG 0mkΔ = ). The reflectivity bandwidth with respect to Ω  equals the Brillouin linewidth BΓ . The bandwidth with respect of probeω is inverselyproportional to the BDG length BDGL . The maximum BDG reflectivity into the cladding mode may be expressed as:  
( )

( )

( )

( )

( )

BDG

clad,out
max

probe 0

2
22BDG,0 2

core clad/core pump1 pump2 BDG
0

222 2
BDG,0 core clad/core pump1 pump2 BDG

2

,

m

m
m

k

m

m

P
R

P

C
Q Q P P L

nc

D Q Q P P L

ΔΩ Δ

ε

= =

≡ ≈

 
 
 

=

(S22) 
where the coefficient BDG,0D  (in units of m×W-1) is defined as:  
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Here we used q vΩ=  with v  the velocity of longitudinal acoustic waves, and we approximated B pump12n v cΩ Ω ω≈ ≈and pump1 probeω ω≈  denoted by ω . The power reflectivity to the cladding mode is weaker than that of a BDG in a polarization maintaining fiber by a transverse efficiency factor ( ) ( ) 2 2
clad/core core

m mQ Qη ≡ . Supplementary Fig. 2 shows the numerically calculated ( )mη  as a function of claddingmode order m. The cladding radius was taken as 125 µm, the core radius was 4.1 µm, and the mode-field diameter of the core mode 
( ) 2

coreu r  was 9.7 µm. Calculations were repeated twice: first under the assumption that the transverse profile of the acoustic mode ( )acu r  is proportional to that of optical intensity in the core mode ( ) 2
coreu r , and again for uniform ( )acu r  within the core.The former model follows the transverse profile of the electrostrictive driving force, whereas the latter matches that of permanent fiber Bragg gratings [S2],. Differences between the two sets of results are small. 

Supplementary Fig. 2. – Calculated transverse efficiency factor of Brillouin dynamic grating coupling as a function of cladding mode order. Blue: the transverse profile of the acoustic mode was assumed to be proportional to the optical intensity profile of the optical core mode: ( ) ( ) 2
ac coreu r u r∝ . Red: the transverse profile of the acoustic mode ( )acu r  was assumed to be uniform across the core. The analysis suggests that BDG coupling is the most efficient for odd cladding mode orders between 13 and 19 [S2]. Note that the even cladding modes are characterized by zero optical field on the fiber axis. The radial profiles of the cladding mode fields oscillate with periods that become shorter as the modal order increases. For low-order even modes, the field remains very weak throughout the extent of the core and the transverse efficiency of Brillouin dynamic grating coupling vanishes accordingly. For higher-order even modes, radial variations in the field profile are gradually pushed into the core, giving rise to somewhat larger transverse overlap with the dynamic gratings. The highest transverse efficiency is expected for mode m = 17. However, even ( )17η is only about 1.5%. The reflectivity ( )17

maxR  of few-cm long BDGs into the cladding is weak: on the order of 100 ppm for few Watts of pumps power. Nevertheless, coupling spectra are successfully used in distributed sensing outside the cladding (see Main Text). Due to the difficulty of collecting light 

from the cladding modes, we monitor the process instead by measuring the changes in the transmitted probe power: 
( )

probe clad,out
mP PΔ = − . 

2. Localization of steady state stimulated Brillouin
scattering interactions through phase coding of pump
wavesThe localization of stimulated Brillouin scattering interactions through the phase coding of two optical waves has been described in detail in several works [S4][S5]. The principle is briefly repeated here for completeness. The reader is referred to a recent review 
[S6]. In this technique, the two pump fields are no longer continuous. The complex magnitude of pump field pump1E  is modulated at its point of entry into the fiber ( 0z = ), so that:  
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(S24) In Supplementary Equation (S24), ( )0

pump1A is a constant magnitude, gv  is the group velocity of light in the fiber, and ( )f tis a modulation function of the optical source with unity norm: 
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( ) ( )0

pump2 pump2,
g

L z
A z t A f t

v

 −= −  
 

 (S25) 
Here ( )0

pump2A  represents a second constant magnitude. Due to the modulation of the pump waves, the magnitude of the stimulated acoustic density perturbation generally does not reach a steady  state. The instantaneous acoustic magnitude is given by [S6]:  
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In Supplementary Equation (S26) we defined a complex linewidth ( ) ( )2 2

ac B Bj j 2 sΓ Ω Ω Ω ΩΓ Ω≡ − −  and a position-dependent time lag ( ) ( )2 gz z L vθ ≡ − . The complex linewidth reduces to 1
B2 Γ  when BΩ Ω= .  Let us denote the auto-correlation function of the modulation waveform ( )f t  as ( )fC ξ , where ξ  is a delay variable. Supplementary Equation (S26) suggests that the expectation value of the stimulated acoustic wave at z  is closely related with 

( )fC zθ   . Note, however, that the acoustic wave magnitude does not perfectly follow the auto-correlation function, due to the exponential weighing window ( ) ( )acexp 't tΓ Ω ⋅ −    that isassociated with electrostrictive stimulation. 
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Following on earlier works [S4-S6], the modulation function 
( )f t  is chosen as a repeating binary phase sequence, with symbol duration T   and a period of N  bits:  

( ) rectn
n

t nT
f t a

T

− =  
 

 (S27) Here ( )rect 1ξ =  if  0.5ξ ≤ and equals zero elsewhere, and 
na  is the value of bit n  in the sequence. The bit duration T  is taken to be much shorter than the Brillouin lifetime: B1T Γ . The values of na  are those a prefect Golomb code: a class of binary phase sequences that are designed for zero side-lobes of their cyclic auto-correlation functions [S6][S7]. Due to the phase modulation, a correlation peak forms at the center of the fiber 

2z L=  ( 0θ = ), where the magnitude of the acoustic wave reaches its steady-state value of Supplementary Equation (S4). The width of the resulting BDG BDGL  equals 1
2 gv T . Periodic, higher-order peaks appear at positions BDG2z L M N L= + ⋅ ⋅ , where 

M  is a positive or negative integer.  Outside the correlation peaks, the magnitudes of the stimulated acoustic waves are rapidly fluctuating, as the arguments within the integral of Supplementary Equation (S26) may assume positive or negative values. The expectation values of the acoustic wave magnitudes outside the peak equal zero for all times. Therefore, in principle, measurements of probeE  at the end of the fiber may retrieve the local BDG spectrum at the position of the correlation peak only. However, even though off-peak Brillouin interactions are zero on average, their instantaneous magnitudes are non-zero with a finite variance [S6]. Off-peak Brillouin interactions contribute noise to the measurements of BDG coupling spectra 
[S6].  Measurements of BDGs with phase-coded pump waves are unambiguous for fiber lengths L   that are shorter than BDGN L⋅ . Since the repeating phase-modulation sequence can be chosen at any length, the range of unambiguous measurements may be arbitrarily long, with no effect on spatial resolution. In many realizations of the concept, the fiber paths leading the two pump waves into the measurement section of interest are deliberately imbalanced, so that a high-order correlation peak ( 1M  ) is in overlap with the region of interest [S8]. With this choice, the position of the correlation peak can be conveniently scanned through small-scale variations in the bit duration T [S8].  A distributed map of BDG coupling spectra as a function of position can be obtained by scanning the location of the correlation peak position, one resolution point at a time, and then scanning the optical frequency of the probe wave probeω at each position. Thetechnique has been widely employed in distributed Brillouin optical correlation domain analysis (B-OCDA) sensing of temperature and axial strain [S5][S6]. It was also used in BDGs over polarization maintaining fibers, towards sensing, all-optical variable delay lines and microwave-photonic filters [S4][S9-S11]. In this work, phase coding of the two pump waves is used to obtain distributed mapping of local coupling spectra between the optical probe field and cladding modes of the fiber under test (see Main Text).  
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