Paper	Field-of-view	Step size (µm)	Number of wavelengths	Scan time	Scan time with FOMA (for the same FOV)	Acceleration factor
Zhang2006	8 mm x 8 mm	50	1	18 min	32 s	33
Zhang2006	8 mm x 8 mm	50	2	160 min	33 s	333
Oh2006	8 mm x 8 mm	50	1	65 min	32 s	125
Oh2006	8 mm x 8 mm	50	2	130 min	33 s	250
Aguirre2014	5 mm x 5 mm	10	1	250 s	117 s	2.1
Aguirre2017	4 mm x 2 mm	15	1	70 s	27 s	2.6
Schwarz2015	8 mm x 8 mm	10	1	5.3 min	186 s	1.7
Schwarz2016	4 mm x 2 mm	20	4	13 min	21 s	33

Supplementary Table 1: Performance comparison of existing acoustic resolution optoacoustic microscopy systems with developed solution.

[Zhang2006] H. F. Zhang et al.: Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging in Nature Biotechnology 24 (7), 2006.

[Oh2006] J.-T. Oh et al.: Three-dimensional imaging of skin melanoma in vivo by dual-wavelenght photoacoustic microscopy in Journal of Biomedical Optics 11 (3), 2006.

[Aguirre2014] J. Aguirre et al.: Broadband mesoscopic optoacoustic tomography reveals skin layers in Optics Letters 39 (21), 2014.

[Aguirre2017] J. Aguirre et al.: Precision assessment of label-free psoriasis biomarkers with ultrabroadband optoacoustic mesoscopy in Nature Biomedical Engineering 1 (0068), 2017.

[Schwarz2015] M. Schwarz et al.: Implications of Ultrasound Frequency in Optoacoustic Mesoscopy of the Skin in IEEE Transactions on Medical Imaging 34 (2), 2015.

[Schwarz2016] M. Schwarz et al.: Three-dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo in Journal of Biophotonics 9 (1-2), 2016.