
Quantum fast hitting on glued trees mapped on a
photonic chip: supplementary material
ZI-YU SHI1,2, HAO TANG1,2, ZHEN FENG1,2, YAO WANG1,3, ZHAN-MING LI1,2, JUN
GAO1,3, YI-JUN CHANG1,2, TIAN-YU WANG1,2, JIAN-PENG DOU1,2, ZHE-YONG
ZHANG1,2, ZHI-QIANG JIAO1,2, WEN-HAO ZHOU1,2, AND XIAN-MIN JIN1,3,*

1Center for Integrated Quantum Information Technologies (IQIT), School of Physics and Astronomy and State Key Laboratory of Advanced 
Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China
2CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and 
Technology of China, Hefei, Anhui 230026, China
3Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, 
Shenzhen 518055, China
*Corresponding author: xianmin.jin@sjtu.edu.cn

Published 27 May 2020

This document provides supplementary information to "Quantum fast hitting on glued trees 
mapped on a photonic chip," https://doi.org/10.1364/OPTICA.388451 giving a detailed 
explanation about the mapping of the glued trees to a 1D chain, the fabrication of 
waveguides, the single-photon imaging process, the data-processing methods and the 
measurement of anti-correlation parameter.

SUPPLEMENTARY NOTE 1 - SIMPLIFICATION PROCESS
OF THE RANDOM GLUED TREES TO A 1D CHAIN

We will first give the general derivation process [S1] of QW; then,
we will give a simple example to make the general derivation
easily understood; finally, we will analyze the simplification
process of CRW.

Consider the Hilbert space of the 1D chain spanned by | col j〉,
which can be represented as the uniform superposition over the
nodes in column j, i.e.,

| col j〉 = 1√
Nj

∑
a∈column j

|a〉 (S1)

where |a〉 represents the state of a node on the glued trees, and
Nj is the number of nodes in column j.

Nj =

 Bj 0 ≤ j ≤ n

B2n+1−j n + 1 ≤ j ≤ 2n + 1
(S2)

If the adjacency matrix of the random glued trees is rep-
resented by A, in which, if two nodes i and j are connected,
Ai,j = 1, otherwise, Ai,j = 0, then we have the following deriva-
tion process. We assume the hopping rate γ of random glued

trees is 1, hence the Hamiltonian H = A. For any 0 < j < n, we
have

A| col j〉 = 1√
Nj

∑
a∈column j

A|a〉

=
1√
Nj

B ∑
a∈column j−1

|a〉+ ∑
a∈column j+1

|a〉


=

1√
Nj

(
B
√

Nj−1| col j− 1〉+
√

Nj+1| col j + 1〉
)

=
√

B(| col j− 1〉+ | col j + 1〉). (S3)

In a similar way, for any n + 1 < j < 2n + 1, we have

A| col j〉 = 1√
Nj

 ∑
a∈column j−1

|a〉+ B ∑
a∈column j+1

|a〉


=

1√
Nj

(√
Nj−1| col j− 1〉+ B

√
Nj+1| col j + 1〉

)
=
√

B(| col j− 1〉+ | col j + 1〉). (S4)

We can see that the hopping rates on the chain which corre-
spond to the left tree and the right tree are uniform, and are

√
B

times of that on the original graph.

https://doi.org/10.1364/OPTICA.388451


Supplementary Material 2

Col 0 Col 1 Col 2 Col 3 Col 4 Col 5

1

2

3

4

5

6

7

√2γ √2 √2 √22γ γ γ γ

γ

8

9

10

11

12

13
14

Fig. S1. Schematic diagram of random glued trees with B=2,
n=2.

However, when comes to the mapping of the random-glued
part of the glued trees, the results are different. The random-
glued part has to satisfy the condition that each node in column
n should be connected to B different nodes in column n + 1, and
vice versa. Then, if j = n, we have

A| col n〉 = 1√
Nn

(
B ∑

a∈column n−1
|a〉+ B ∑

a∈column n+1
|a〉
)

=
1√
Nn

(
B
√

Nn−1| col n− 1〉+ B
√

Nn+1| col n + 1〉
)

=
√

B| col n− 1〉+ B| col n + 1〉. (S5)

Similarly,

A| col n + 1〉 = 1√
Nn+1

(
B ∑

a∈column n
|a〉+ B ∑

a∈column n+2
|a〉
)

=
1√

Nn+1

(
B
√

Nn| col n〉+ B
√

Nn+2| col n + 2〉
)

= B| col n〉+
√

B| col n + 2〉. (S6)

We can see that the hopping rate on the chain corresponding
to the random-glued part is B times of the hopping rate on the
glued trees, different from the rest of the hopping rates. It is
obvious that what exactly the random-glued part is does not
affect the geometry of the 1D chain. Next, we will use a simple
example to illustrate the above derivation process.

If | col 0〉, | col 1〉, | col 2〉, | col 3〉 can be represented as

| col 0〉 = |1〉, (S7)

| col 1〉 = 1√
2
(|2〉+ |3〉), (S8)

| col 2〉 = 1√
4
(|4〉+ |5〉+ |6〉+ |7〉), (S9)

| col 3〉 = 1√
4
(|8〉+ |9〉+ |10〉+ |11〉), (S10)
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Fig. S2. Schematic diagram of CRW’s 1D equivalence with
B=2, n=2. The numbers above the 1D chain are the hopping
rates in the forward direction which are determined by the
number of edges connected to the right side node, and the
numbers below the 1D chain are the hopping rates in the back-
ward direction which are determined by the number of edges
connected to the left side node. The number under each node
on the 1D chain presents the outdegree of this node.

then,

A| col 1〉 = 1√
2

A(|2〉+ |3〉) (S11)

=
1√
2
(|1〉+ |4〉+ |5〉+ |1〉+ |6〉+ |7〉)

=
1√
2
(2| col 0〉+

√
4| col 2〉)

=
√

2(| col 0〉+ | col 2〉).

A| col 2〉 = 1√
4

A(|4〉+ |5〉+ |6〉+ |7〉) (S12)

=
1√
4
(|2〉+ |9〉+ |10〉+ |2〉+ |10〉+ |11〉

+|3〉+ |8〉+ |11〉+ |3〉+ |8〉+ |9〉)

=
1√
4
(2
√

2| col 1〉+ 2
√

4| col 3〉)

=
√

2| col 1〉+ 2| col 3〉.

The hopping rates between | col 0〉 and | col 1〉, | col 1〉 and
| col 2〉, | col 2〉 and | col 3〉 on the chain are

√
2,
√

2, 2 respectively.
It is obvious that, as long as the random-glued part satisfies that
each node in column 2 is connected to 2 different nodes in col-
umn 3, and vice versa for column 3, the specific connection way
does not affect the structure of the 1D chain. The hopping rates
between the remaining nodes on the chain can be derived in a
similar way.

Obviously, it is the superposition property of QW, which
is embodied by equation (S1), that makes this simplification
process possible. However, when comes to the analysis of CRW,
the methods and results are totally different. We’ll see that CRW
can also be simplified to a 1D model and the hitting efficiency is
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consistent with that of the original two-dimensional structure
which exponentially decays with the tree depth.

For CRW, its probability vector can be obtained by

p(t) = e−Mt · p(0), (S13)

with generator matrix M satisfies

Mij =

 −γAij, i 6= j

γd(j), i = j
(S14)

in which, γ is the hopping rate between two adjacent nodes; d(j)
is the outdegree of the jth node, i.e. the number of edges that
the jth node connects to the other nodes [S2].

For the classical case, on the one hand, classical particle does
not have superposition property, hence Equation (S1) cannot
stand. On the other hand, we can clearly see that in the left part
of the glued tree, each node is connected to B branches forward
and 1 branch backward, so the forward probability from column
j to j+ 1 is B times of the backward probability from column j+ 1
to j, and vice versa for the columns in the right part of the glued
trees. Hence, the analysis of CRW’s probability distribution on
the random glued trees can also be reduced to a 1D chain as
shown in Fig.S2 [S3][S4].

For CRW, when evolving time is long enough, its probabil-
ity distribution will be uniform and stationary, and the hitting
probability at each node is the inverse of the number of nodes
on the glued trees. The number of nodes on the glued trees N
is in an exponential relation with n. Utilizing the M matrix of
the 1D chain for calculation, we can get the probability of each
node on the chain reaches a stationary value of 1/N, which is
consistent with the theoretical result for classical hitting in the
2D structure. Different from QW, the jth node on CRW’s 1D
chain just represents one node in the jth column of the 2D graph
rather than the whole column, and the sum of the probability of
such classical 1D chain does not equal to 1. The simplification
process of the CRW on random glued trees may be useful for
the theoretical calculation of the CRW on the other symmetrical
graphs[S3].

SUPPLEMENTARY NOTE 2 - THE SENSITIVITY ANALY-
SIS OF THE EXPERIMENTAL RESULTS WITH RESPECT
TO THE COUPLING COEFFICIENTS

The main reason that causes the experimental results different
from the theoretical values is the experimental coupling coeffi-
cients differing from the theoretical hopping rates. It will lead to
an inaccurate implementation of the hopping rate γ and branch-
ing rate B. The inaccurate realization of B will alter the optimal
hitting efficiency, while the inaccurate realization of γ will alter
the optimal evolving length. We will use the theoretical simu-
lation of glued trees with n = 16 and B = 5 as an example to
quantitatively illustrate the effects of the deviation of C to the
results.

In Fig.S3 (a), the branching rate B is kept as 5. We can see that
when decreasing γ from 0.1163mm−1 to 0.0983mm−1 (the C cor-
responding to

√
Bγ decreasing from 0.26mm−1 to 0.22mm−1 cor-

respondingly), the optimal evolving length increases by 13mm
(15.7%) while the optimal hitting efficiency doesn’t change. In
Fig.S3 (b), keep γ as 0.1163mm−1, and increase B from 5 to
6 (the C corresponding to

√
Bγ increasing from 0.26mm−1 to

0.285mm−1 correspondingly), then we can see the optimal hit-
ting efficiency decreases from 0.268 to 0.234, decreasing about
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Fig. S3. The influence of the errors in γ or B on the results.
a, B = 5, γ is decreased from 0.1163mm−1 to 0.0983mm−1,
the C corresponding to

√
Bγ decreasing from 0.26mm−1 to

0.22mm−1 correspondingly. The optimal evolving length in-
creases by 13mm (15.7%) while the optimal hitting efficiency
does not change. b, γ = 0.1163mm−1, B is increased from 5
to 6, the C corresponding to

√
Bγ increasing from 0.26mm−1

to 0.285mm−1 correspondingly. The optimal hitting efficiency
decreases from 0.268 to 0.234, decreasing about 12.7%.

12.7%. It is obvious that the experimental results are highly
sensitive to the precision of the coupling coefficients. What’s
more, on the one hand, there exists errors in the measurements
of the coupling coefficient. On the other hand, the C is in an
exponential relation with respect to d, and a slight change of
environment or direct-writing laser will change the specific func-
tion of C. Therefore, the successful implementation of glued
trees’ 1D equivalence in experiment is really challenging.

To improve the repeatability, one should keep the C of the
experimental chip consistent with the C-measurement chip as
much as one can. The parameters of the laser (e.g., the shape,
the power), and the condition of the environment (e.g., the tem-
perature, the humidity) all should be kept the same. The interval
time between the fabrication of the C-measurement chip and
the experimental chip should be reduced as short as possible to
avoid parameters changing with time. The fabrication time of
the experimental chips had better not exceed 3 hours. Through
these efforts, the repeatability of this work can be much ensured.

SUPPLEMENTARY NOTE 3 - FABRICATION OF THE
WAVEGUIDE ARRAYS

In the femtosecond laser direct writing process, the writing laser
with a wavelength of 513nm is up-converted from a femtosecond
laser with a wavelength of 1026nm, a pulse duration of 290 fs,
and a repetition rate of 1 MHz, and is firstly sent through a spa-
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tial light modulation (SLM) and then focused on a borosilicate
chip substrate through a 50× objective lens. The waveguide
is written at a depth of 380um with a velocity of 10mm/s. To
insure the uniformity of the waveguide arrays, power compen-
sation are also used. The optimal range of d is about 10µm-15µm,
and corresponding coupling coefficient ranges from 0.15mm−1

to 0.6mm−1. The coupling coefficients used in this work range
from 0.22mm−1 to 0.6mm−1.

As for the determination of the waveguide spacing d and
measurement of the coupling coefficient C, the method can be
described as follows. First, we write waveguide pairs of dif-
ferent waveguide spacings and measure the output intensity
distribution at different evolving lengths, hence we can obtain
the C at different d [S5], e.g. 10, 12, 14, 16, 18 µm. Next, we use
exponential function to fit the obtained C− d data, so that we
can get the specific function of coupling coefficient and waveg-
uide spacing, from which we can obtain the corresponding d if
the C is given. Then, considering the experimental feasibility,
we choose suitable coupling coefficient to calculate correspond-
ing optimal evolving length. Finally, for graphs of each size,
we fabricate waveguide arrays at different lengths with waveg-
uide spacings consistent with the coupling coefficients used in
theoretical calculation.

The specific values of d for the case of branching rate B =
3 are given as an example (Table S1). For B = 3, the C that
corresponds to the hopping rate

√
Bγ of the 1D structure is

0.2843mm−1 and the C that corresponds to the hopping rate Bγ
of the 1D structure is 0.4924mm−1. The values of d for different
layer depth n shown in Table S1 is slightly different. It’s because
the precise relationship between C and d may slightly vary when
the condition of the femtosecond laser and the environment
changes. Therefore, every time before we decide to fabricate
an experimental chip, we will calibrate the function of C with
respect to d again, which always follows an exponential decay.

SUPPLEMENTARY NOTE 4 - SINGLE-PHOTON IMAGING
OF SPATIAL PHOTON NUMBER DISTRIBUTIONS

To carry out the experiment in the quantum regime, we use
heralded single photons as the photon source (Fig. S8). The
810nm photon pairs are generated via a type-II spontaneous
parametric down conversion (SPDC) process, pumped by an
ultraviolet laser with a wavelength of 405nm in a PPKTP crystal.
The generated photon pairs are sent through a long-pass filter
and then separated into horizontal and vertical component by
utilizing a polarized beam splitter(PBS). The vertically-polarized
photons are injected into the waveguide arrays, playing the role
of quantum walkers, while the horizontally-polarized photons
are used to give the ICCD camera a photographing command
via a single-photon detector (APD). The photographing
commands triggered by the horizontally-polarized photons
are used to avoid the impact of thermal light statistics and can
considerably suppress the noise level.

SUPPLEMENTARY NOTE 5 - CALCULATION OF THE HIT-
TING EFFICIENCY

By photographing the spatial photon number distributions of
single photons via an ICCD, we obtain the picture as well as
a corresponding ASCII file which records the photon intensity
of each pixel. We first find the center pixel coordinate for each
waveguide shown in the picture, and then measure the radius

Table S1. Waveguide spacing d at different n for the case of
B=3. The hopping rate

√
Bγ or Bγ refer to the hopping rate of

the 1D structure.

n d (µm) for
√

Bγ d (µm) for Bγ

2 13 10.8

4 13 10.8

6 13 10.8

8 12.8 10.4

10 13.6 10.6

12 13.6 10.6

14 13.6 10.6

16 13.6 10.6

in terms of pixel counts for the light spot in each waveguide. By
summing up the intensity value within the radius and normaliz-
ing them, we get the probabilities of photons distributed at each
waveguide.

SUPPLEMENTARY NOTE 6 - SPATIAL PHOTON NUM-
BER DISTRIBUTIONS AND SCALINGS OF OPTIMAL
EVOLVING LENGTH

The experimental results for trees with B =2, 3, 4, 5 are presented
in Fig. S4-S7 respectively. Each figure shows spatial photon num-
ber distributions of optimal hitting efficiencies and scalings of
the corresponding optimal evolving lengths with n ranging from
2 to 16. Optimal evolving length refers to the evolving length at
which optimal hitting efficiency occurs. Note that hopping rate
γ between two adjacent nodes on random glued trees will influ-
ence the optimal evolving length, hence we set the same hopping
rate for all the four scaling plots shown in Fig. S4-S7. The linear
scaling is clearly suggested by the theoretical calculation and
is well agreed by the experimental results. For samples at the
same B, though optimal hitting efficiency decreases slightly with
the increasing number of waveguides as n increases, most of
the photons would gather at the exit waveguide when optimal
hitting efficiency occurs. Comparing spatial photon number dis-
tributions of the same n in different Bs, there is an overall drop
of the light intensity at the exit waveguide from B = 2 to B = 5.
This leads to the slight decrease of optimal hitting efficiency as
B increases, and is consistent with theoretical studies [S6].
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Fig. S4. Spatial photon number distributions and scalings of optimal evolving lengths for samples at B = 2. a, Spatial photon
number distributions of optimal hitting efficiency from 2-layer to 16-layer at B = 2. The injecting waveguide is marked by a white
circle. b, Variation of optimal evolving lengths with n ranging from 2 to 16 in theory and experiment respectively. Error bars for the
experimental optimal evolving lengths are the intervals of evolving length values between two adjacent samples at the same n and
B used in experiments. Since evolving length values are discrete in experiment, the optimal evolving length may lie between two
adjacent waveguide length values. The error bar descriptions also apply to Fig. S5, S6 and S7.
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Fig. S5. Spatial photon number distributions and scalings of optimal evolving lengths for samples at B = 3. a, Spatial photon
number distributions of optimal hitting efficiency from 2-layer to 16-layer at B = 3. The injecting waveguide is marked by a white
circle. b, Variation of optimal evolving lengths with n ranging from 2 to 16 in theory and experiment respectively.
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Fig. S6. Spatial photon number distributions and scalings of optimal evolving length for samples at B = 4. a, Spatial photon
number distributions of optimal hitting efficiency from 2-layer to 16-layer at at B = 4. The injecting waveguide is marked by a
white circle. b, Variation of optimal evolving lengths with n ranging from 2 to 16 in theory and experiment respectively.
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Fig. S7. Spatial photon number distributions and scalings of optimal evolving length for samples at B = 5. a, Spatial photon
number distributions of optimal hitting efficiency from 2-layer to 16-layer at B = 5. The injecting waveguide is marked by a white
circle. b, Variation of optimal evolving lengths with n ranging from 2 to 16 in theory and experiment respectively.
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QWP HWP PBS PPKTP LPF PBS

LensPhotonic chipLens

405nm Laser

Iris

Fig. S8. Setup of measuring α. A 405nm laser pumping a PPKTP crystal can generate 810nm correlated photon pairs via the type-
II SPDC process. A long pass filter (LPF) is inserted to block the pump laser. Then the photon pairs pass through a PBS and are
separated into vertically-polarized photons and horizontally-polarized photons. The horizontally-polarized photons play the
role of trigger signal and are detected by an avalanched photodiode (APD3); the vertically-polarized photons are injected into the
photonic chip. Then, an iris is used to filter out the photons coming from the exit waveguide. Finally, the out-coming photons are
coupled into a balanced fiber beam splitter and detected by two separate APDs (APD1 and APD2). A photon coincidence counter
module (not shown in the picture) is utilized to record the coincidence events. This setup can be switched into the single-photon
imaging of spatial photon number distribution by replacing APD1, APD2 and the fiber beam splitter with an ICCD camera. QWP,
quarter-wave plate; HWP, half-wave plate; PBS, polarized beam splitter; PPKTP, periodically poled KTP crystal; LPF, long-pass
filter; APD, avalanched photodiode.

SUPPLEMENTARY NOTE 7 - MEASUREMENTS OF
SECOND-ORDER ANTI-CORRELATION PARAMETER α

The second-order anti-correlation parameter α, which tends to
be 0 for ideal single photon and 1 for classical coherent light, can
be described as [S7]

α =
N3N123
N13N23

, (S15)

where N3 represents the number of trigger signals; N23(N13),
N123 represent the number of two- and three-fold coincidence
detection events.

As shown in Fig. S8, one arm of the single photon pairs
that generated in the SPDC single photon source is used as the
trigger signal, and another is injected into the waveguide arrays.
The number of trigger signal can be detected by an avalanched
photodiode (APD3), through which we can obtain N3. As for
the photons being injected into the waveguide arrays, when
they have exited the photonic chip, those coming from the exit
waveguide are filtered out by an iris inserted after the chip, then
the out-coming photons are coupled into a balanced fiber beam
splitter and detected by two separate APDs (APD1 and APD2),
hence we can obtain the rest of the coincidence detection events.
A photon coincidence counter module (not shown in the picture)
is utilized to record the coincidence events.
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