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1. BIPARTITE WITNESS FOR D-DIMENSIONAL ENTAN-
GLEMENT

We performed quantum tomography and obtained the fidelity
F after distribution. We then employed the method developed
in previous work [1] to certify the 4-dimensional entanglement.
In the following text, we provide a maximal overlap between
the chosen high-dimensional state and states with a bounded
Schmidt rank d. If the fidelity reveals a higher overlap than this
bound, the justification of at least (d + 1)-dimensional entangle-
ment is demonstrated.

The Schmidt decomposition of high dimensional state is de-
scribed as |ϕ〉 = ∑d

i=1 λi|ii〉, with the coefficients in decreas-
ing order |λ1| ≥ |λ2| ≥ · · · ≥ |λd|. The witness for the d-
dimensional entanglement is constructed by comparing the two
fidelities,

F = Tr(ρ|ϕ〉〈ϕ|),

Fd = max|φd〉 |〈φd|ϕ〉|2,
(S1)

where ρ is the density matrix after distribution and |φd〉 =

∑d
m,n=1 αmn|mn〉 represents states with a bounded Schmidt rank

d. A global search to maximize the Fd convinced us that F > Fd
could not be satisfied by a d-dimensional entangled state. In
other word, the generated bipartite system is entangled at least

(d + 1)-dimension. We rewrite the maximal overlap as

Fd = max
|φd〉
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We next introduce two operators of the form

U = cmn|m〉〈n|,
PdU∗ = U∗,

(S3)

where Pd is a rank d-projector which always exists if B∗ of rank
d, as |φd〉 is also of Schmidt rank d. Combining these equations,
we have

Fd = max
|φd〉
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For the inner product 〈A, B〉 ≡ Tr(AB†) taking advantage of
Cauchy-Schwarz inequality |〈A, B〉|2 ≤ 〈A, A〉〈B, B〉, upper
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bound of Fd is found to be

Fd ≤ max
|φd〉

Tr
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Because Tr(BB†) = ∑D
m,n=1 cmnc∗nm ≤ 1 and choosing Pd =

∑d
i=1 |i〉〈i|, we get the upper bound of Fd for d-dimensional en-

tangled states with a simple formula

Fd ≤
d

∑
i=1
|λi|2 . (S6)

Thus we find a tight bound for witness of (d + 1)-dimensional
entanglement

Fd = max
|φd〉
|〈φd|ϕ〉|2 =

d

∑
i=1
|λi|2 . (S7)

For d = 4, this bound is found to be 3/4.

2. BELL AND STEERING INEQUALITIES

We used the CGLMP Bell inequality in [2] to test the non-locality
of d=2, 3, 4 entangled states. Here, we show more details of
the scenario, in which, we focus on a particular instance of
two measurements per observer, A1 or A2, and B1 or B2. A
state ρ is shared by Alice and Bob, who perform one of two
measurements with equal probability, obtaining Ax = {Ma|x}a
for A, Bx = {Mb|x}b for B with x, y = 1, 2 and a, b = 0, ..., d− 1.

The correlations are joint probabilities {p(ab|xy)}a,b ≡
{p(Ax = a, By = b)}. These joint probabilities mean that Alice
and Bob obtain outcomes a and b separately. They can also be
expressed by using Born rule as {p(ab|xy)}a,b = Tr[ρ(Ma|x ⊗
Mb|y)].

The Bell inequalities we used to test nonlocality of the high-
dimensional entangled state are:

Id ≡
[d/2]−1

∑
k=0

(1− 2k
d− 1

){[P(A1 = B1 + k)

+ P(B1 = A2 + k + 1) + P(A2 = B2 + k)
+ P(B2 = A1 + k)]− [P(A1 = B1 − k− 1)

+ P(B1 = A2 − k) + P(A2 = B2 − k− 1)

+ P(B2 = A1 − k− 1)]},

(S8)

in which

P(Ax = By + k) ≡
d−1

∑
a=0

P(Ax = a, By = a + k mod d).

The bases |a〉x, |b〉y used by Alice and Bob is

|a〉dx =
1√
d

d−1

∑
k=0

ei 2π
d k(a+αx)|k〉,

|b〉dy =
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d
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∑
k=0

ei 2π
d k(−b+βy)|k〉,

(S9)

where α1 = 0, α2 = 1/2, β1 = 1/4, and β2 = −1/4.
To verify steering nonlocality, we introduce two sets of d-

dimensional mutually unbiased measurement bases for the
two local subsystems: |m〉A(B) ∈ {|`0〉 , . . . , |`k〉 , . . . |`d−1〉} and
|M〉A(B) ∈ {|L0〉 , . . . , |Lk〉 , . . . , |Ld−1〉}: is the superposition of

|`k〉: |Lk〉 = ∑d−1
j=0 exp[(i2π/d)kj]

∣∣∣`j

〉
/
√

d. The steering param-
eter can be expressed as
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where i + j .
= 0 under the second sum sign denotes equality

modulo d, i.e., i + j = 0 or i + j = d, and P
(
`A

i , `B
j

)
, denotes the

probability that Alice is holding particle in state
∣∣`A

i
〉
, and in the

meantime, Bob’s state is
∣∣∣`B

j

〉
, and the same to P

(
LA

i , LB
j

)
. For

all unsteerable states, their results would be limited at S(EPR)
Φ ≤

αbound, where αbound = 1 + 1/
√

d. Therefore, if Alice could
demonstrate a violation of this inequality, Bob has to admit her
steerability.
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Fig. S1. Measurement Setup. All HWPs are set at 22.5◦. By ad-
justing the phase of liquid crystal (LC1-LC3), we can complete
the measurement of (|0〉+ eiϕ1 |1〉+ eiϕ3 (|2〉+ eiϕ2 |3〉))/2.

3. CONSTRUCTION OF MEASUREMENT BASES

Here we provide the details of the measurement setup. Let
us take a four-dimensional measurement as an example. The
measurement bases for the four-dimensional CGLMP inequality
is as follows:
A1:

|0〉41 = (|0〉+ |1〉+ |2〉+ |3〉)/2,

|1〉41 = (|0〉+ i|1〉 − |2〉 − i|3〉)/2,

|2〉41 = (|0〉 − |1〉+ |2〉 − |3〉)/2,

|3〉41 = (|0〉 − i|1〉 − |2〉+ i|3〉)/2.

A2:
|0〉42 = (|0〉+ eπi/4|1〉+ i|2〉+ e3πi/4|3〉)/2,

|1〉42 = (|0〉+ e3πi/4|1〉 − i|2〉+ eπi/4|3〉)/2,

|2〉42 = (|0〉+ e−3πi/4|1〉+ i|2〉+ e−πi/4|3〉)/2,

|3〉42 = (|0〉+ e−πi/4|1〉 − i|2〉+ e−3πi/4|3〉)/2.

B1:
|0〉41 = (|0〉+ eπi/8|1〉+ eπi/4|2〉+ e3πi/8|3〉)/2,

|1〉41 = (|0〉+ e−3πi/8|1〉+ e−3πi/4|2〉+ e7πi/8|3〉)/2,

|2〉41 = (|0〉+ e−7πi/8|1〉+ eπi/4|2〉+ e−5πi/8|3〉)/2,

|3〉41 = (|0〉+ e5πi/8|1〉+ e−3πi/4|2〉+ e−πi/8|3〉)/2.

B2:

|0〉42 = (|0〉+ e−πi/8|1〉+ e−πi/4|2〉+ e−3πi/8|3〉)/2,

|1〉42 = (|0〉+ e−5πi/8|1〉+ e3πi/4|2〉+ eπi/8|3〉)/2,
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|2〉42 = (|0〉+ e7πi/8|1〉+ e−πi/4|2〉+ e5πi/8|3〉)/2,

|3〉42 = (|0〉+ e3πi/8|1〉+ e3πi/4|2〉+ e−7πi/8|3〉)/2.

In our experimental scheme, we use a hybrid of polarization
and path coding. The angles of HWP1, HWP2, HWP3 are set
at 22.5◦ (Fig. S1). The function of liquid crystal (LC) is to load
a phase ϕ between H-polarized and V-polarized photon. LC1,
LC2 and LC3 are loaded ϕ1, ϕ2 and ϕ3 between H-polarized and
V-polarized photon, respectively. The (|0〉+ eiϕ1 |1〉+ eiϕ3 (|2〉+
eiϕ2 |3〉))/2 measurement basis can be constructed using our
setup (Fig. S1).

4. MULTIPLE OUTCOME MEASUREMENT BASES FOR
HIGH-DIMENSIONAL QKD AND CGLMP INEQUALITY
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Fig. S2. Multiple outcome measurement setups for 3-
dimensional and 4-dimensional QKD. (A) is the setup of 3-
dimensional computational basis and Fourier basis. By con-
trolling the presence or absence of half-wave voltage loaded
on LCs, two kinds of measurement bases can be switched. (B)
is the setup of 4-dimensional computational basis and Fourier
basis.

For high-dimensional QKD and CGLMP inequalities, multi-
ple outcome projection measurements are generally required. In
this section, we give the scheme of multiple outcome measure-
ment bases for high-dimensional QKD and CGLMP inequalities.

Computational (|0〉, |1〉, ..., |d − 1〉) and Fourier bases
(∑d−1

k=0 ei 2π
d |i〉/

√
d) are needed for high-dimensional QKD. We

need to set LCs at some fixed angles as shown in Fig. S2. When
LC is loaded with zero voltage, LC does not affect the photon’s
polarization. At this time, the measurement of the computa-
tional basis is completed. When LC is loaded with half-wave
voltage, the LC’s effect is equivalent to an HWP, and the mea-
surement of the Fourier basis is completed. By controlling the
voltage of LCs, we can realize the fast switch of these two bases.

For CGLMP inequality, its measurement basis is a set of high-
dimensional MUB (Eq. S9). As shown in Fig. S3, we first con-
struct a set of fixed Fourier bases using HWPs, QWPs, BDs,
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Fig. S3. Multiple outcome measurement bases setup for 3-
dimensional and 4-dimensional CGLMP inequality. (A) is the
setup of 3-dimensional MUB (Eq. S9). Within the dotted box
is a fixed 3-dimensional multiple outcome Fourier basis. By
using LCs to load different phases on different paths, different
MUBs can be obtained. (B) is the setup of 4-dimensional MUB
(Eq. S9).

and PBSs. After that, by adjusting the phase of each dimension
through LCs, the switch of other MUBs can be completed.

5. MULTIDIMENSIONAL QUANTUM KEY DISTRIBUTION

In our experiment we use a generalized entanglement-based
version of the BB84 protocol for high dimensional systems, ini-
tially proposed and analyzed in Ref. [3], and test it for different
dimensions (d = 2, 3, 4). In Table S1, we report experimental
correlations data for high-dimensional mutually unbiased bases
required for QKD (computational and Fourier bases). The final
secret key rate (per coincidence) can be obtained as [4]:

Rd = log2d− 2Hd(1− FQKD), (S11)

where Hd(e) represents the d-dimensional Shannon entropy, 
given as a function of the fildelity F QKD and the dimension d by
Hd (e) = − (1 − e) log2 (1 − e) − e log2 [e/(d − 1)].

In Table S1, we report the maximal values of the QBER, given 
by the infidelity QBER = 1 − FQKD, required to achieve a posi-
tive key rate in the cases where Eve is allowed coherent attacks 
QBERT

Co
h

h. It can be observed that in general higher dimension-
ality corresponds to higher tolerance to noise and higher photon 
information efficiency.

6. PHASE STABILITY AND FIBER LOCKING SYSTEM

In our experiment, we use 11 km multicore fiber ( MCF) to 
distribute path-polarization entanglement. There were two 
challenges, one is the polarization preservation through long-
distance fibers, the other is the phase stability between different 
cores. Firstly, we lay all the fibers including fan-in and fan-out 
on the optical table. We place an HWP in each export of the fan-
in/fan-out to maintain H- and V-polarization, and a tilt quarter-
wave plate to compensate for the differential birefringence of
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Table S1. Security analysis for a device-dependent QKD (BB84-type) in different dimensions. Reported are the experimentally
measured fidelity FQKD, the associated experimental QBERExp, the theoretical maximal QBER bounds QBERCoh

Th for coherent
attacks, experimental secure key rate RExp and theoretical secure key rate bound RBound from dimension 2 to 4.

d FQKD(%) QBERExp(%) QBERCoh
Th (%) RExp(bpc) RBound(bpc)

2 98.30± 0.04 1.59± 0.04 ≤ 11.00 0.756± 0.03 1

3 96.40± 0.06 2.84± 0.06 ≤ 16.00 1.062± 0.04 1.584

4 94.50± 0.07 5.53± 0.07 ≤ 18.93 1.268± 0.04 2
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Fig. S4. Polarization stabilities of single cores. Here, the aver-
age visibility in an hour is 0.985 ± 0.001 and 0.969 ± 0.001 for 
core1 and core2, respectively.

the two cores. In the laboratory environment (the temperature 
fluctuation in the laboratory is ±0.5oC), the polarization states 
are maintained well as shown in Fig. S4. The average visibilities 
in an hour are 0.985 ± 0.001 and 0.969 ± 0.001 for core1 and core2. 
These results are worse than those using single-mode fibers in a 
length of a few meters due to the polarization mode dispersion 
and group velocity dispersion. For an outdoor environment, an 
active feedback system is feasible to compensate for the polar-
ization mode dispersion [5]. Then, we use a fiber locking system 
(FLS) to lock the relative phase between core1 and core2 used 
in our experiment. Fig. S5 shows the phase drift between the 
two cores without active feedback. Different from Ref [6], where 
the phase drift is very slow in 300 m MCFs (the time scale of 2π 
phase change is in an order of hours without active feedback), 
the phase drift in our experiment is terrible without feedback. 
The difference is caused by the coupling methods. In our experi-
ment, we use packaged fan-in and fan-out where the spatially 
separated fiber pigtails are approximate 10 m in length, and the 
phase drift between different paths is increased dramatically. 
Combined with 11 km MCF, the time scale of 2π phase change 
between different paths is in an order of minutes without active 
feedback as shown in Fig. S5. As shown in Fig. S6, the system 
is stable after the active feedback system (FLS given in Fig. 1, 
the frequency of the feedback system is 5 Hz) is turned on. To 
test the feedback system, we measured the visibility between 
different cores (core1-core2 and core1-core3), and the average 
visibility of the two cases in one hour is V = 0.915 ± 0.001, and 
0.907 ± 0.001. These results prove that it is feasible to use more 
cores to distribute high-dimensional path entanglement. The

brightness of reference light used in the locking system is 106

photons/s.
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Fig. S5. Phase drift between core1 and core2 without active
feedback. Due to the influence of fan-in and fan-out pigtails,
the phase drift is faster than that of the multicore fiber itself
[6]. Here, P = NDetection/NTotal refers to the proportion of
photons detected in one arm of the interferometer. To reduce
the fluctuation, we use a total photon rate of 106 photons/s.
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