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This document provides supplementary information to "Fundamental limits of quantum illumi-
nation," https://doi.org/10.1364/OPTICA.391335. Supporting calculations for the results on detection 
of Rayleigh fading targets and on target reflectance estimation are presented.

1. TARGETS EXHIBITING FLAT RAYLEIGH FADING: ER-
ROR PROBABILITY LOWER BOUND FOR QI

We asserted in the main text that, for targets exhibiting flat
Rayleigh fading, the density operators of the joint return-idler
system when the target is absent and present are given by

ρ0 =
[
idI ⊗

(
L⊗M

0,NB

)]
(Ψ) , (S1)

ρ1 = (1/2π)
∫ 1

0
dη P(η)

∫ 2π

0
dφ

[
idI ⊗

(
Uφ ◦ Lη,N(η)

B

)⊗M
]
(Ψ)

(S2)

respectively. It is usual in the classical radar literature to as-
sume that

√
η has a Rayleigh distribution – see, e.g., Sec. 4.4.2

of [1]. Then η itself has the exponential probability density
P̃(η) = (1/η) exp (−η/η) supported on η > 0. Strictly speak-
ing, the probability that η > 1 should be zero since the target
is a passive reflector. However, the above model is an excellent
approximation for a diffuse reflector as long as η � 1, which is
usually the case in practice.

Quantum mechanically, however, Eq. (1) of the main text
does not represent a physically possible transformation if η >

1. To deal with this issue, we replace P̃(η) with the truncated
exponential density

P(η) =

 exp (−η/η) /
[
η
(

1− e−1/η
)]

if η ∈ [0, 1]

0 if η > 1.
(S3)

Again, if η � 1, the discrepancy between Eq. (S3) and P̃(η) is
negligible. It is the probability density of Eq. (S3) that appears

in Eq. (S2) and Eq. (15) of the main text. Finally, note that setting

N(η)
B = NB/ (1− η) in Eq. (S2) enforces the no-passive-signature

assumption in this fading scenario. While this implies that N(η)
B

can vary greatly in the vicinity of η ≈ 1, such large deviations of
the background noise in the model have very low probability if
η � 1.

We can now proceed to develop our error probability lower
bound. First, we observe that the squared fidelity F2(ρ, σ), like
F(ρ, σ) itself [2], is concave in each of its arguments [3], so that
we can write

F2(ρ0, ρ1) > (1/2π)
∫ 1

0
dη P(η)

∫ 2π

0
dφ

× F2

{
ρ0,

[
idI ⊗

(
Uφ ◦ Lη,N(η)

B

)⊗M
]
(Ψ)

}
.

(S4)

Noting that the fidelity appearing in the integrand is φ-
independent, we can apply the inequalities of Eqs. (10)-
(11) of the main text to it and use the bound Pe [σ0, σ1] >
π0π1 F2 (σ0, σ1) to get the lower bound

PΨ;fading
e > π0π1

∫ 1

0
dη P(η)

[
∞

∑
n=0

pn

(
1− η

NB + 1

)n/2
]2

(S5)

on the average error probability of detecting a fading target.
For any given transmitter Ψ with corresponding {pn}, the right-
hand side can be evaluated analytically in some cases, and nu-
merically otherwise.
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We can further derive an analytical transmitter-independent
bound as follows. Applying Jensen’s inequality to the quantity
in brackets in Eq. (S5) gives

PΨ;fading
e > π0π1

∫ 1

0
dη P(η)

(
1− η

NB + 1

)NS

. (S6)

For NB > 0 and 0 6 η 6 1, we have 1 − η/(NB + 1) >
exp(−γη), where γ = ln(1 + 1/NB) is chosen such that the
graph of exp(−γη) intersects that of 1− η/(NB + 1) at η = 0
and η = 1. Substituting this lower bound into Eq. (S6) and
evaluating the integral gives

PQI;fading
e > π0π1

1− exp (−γNS − 1/η)

[1− exp (−1/η)] (1 + ηγNS)
, (S7)

>
π0π1

1 + ηγNS
, (S8)

which is Eq. (16) of the main text.

2. ESTIMATION OF TARGET REFLECTANCE

In this section, we provide derivations of the results pertaining to
estimating the reflectance η � 1 of a weakly reflecting specular
target. As described in the main text, for any transmitter Ψ,
the density operator ρη of the returned signal and idler modes
conditioned on the target reflectance having the value η is given
by

ρη =

[
idI ⊗

(
U⊗M

φ ◦ L⊗M
η,N(η)

B

)]
(Ψ) , (S9)

=
[
idI ⊗

(
U⊗M

φ ◦ A⊗M
NB+1 ◦ L

⊗M
η/(NB+1)

)]
(Ψ) , (S10)

where we have used the decomposition of Eq. (8) of the main
text. Now note that the quantum channel U⊗M

φ ◦ A⊗M
NB+1 that

is applied ‘downstream’ to the S system is η-independent, and
can be realized by coupling an ancilla mode A in a fixed state
to the S system and evolving the joint system under a fixed
unitary (this is the so-called Stinespring dilation of a quantum
channel [2]). The monotonicity property of the QFI under partial
trace [4] then implies that the QFI on η achieved by making a
measurement on the joint ISA system is at least as much as that
on the IS system alone. On the other hand, the invariance of QFI
under a known η-independent unitary transformation implies
that the former value equals the QFI on η of the state family

ση =
[
idI ⊗L⊗M

η/(NB+1)

]
(Ψ) . (S11)

We have thus reduced the problem to maximizing the QFI
on η for the outputs

{
ση
}

of pure-loss channels under an energy
constraint on the S modes. This problem was solved in [5] (cf.
Eq. (14) therein), and transforming variables in that result gives
the upper bound

KQI
η 6

NS
η (NB + 1− η)

(S12)

for the QFI of any transmitter Ψ for any value of the excess noise
NB, which reproduces Eq. (19) of the main text.

Consider a single-mode coherent-state transmitter |ψ〉S =∣∣√NS
〉

S of energyNS. In order to evaluate the QFI on η, we first
calculate the fidelity between the states ρCS

η and ρCS
η′ of Eq. (S9)

for any two values η and η′. Using known results on the fidelity
between Gaussian states (see e.g., Eq. (3.7) of [6]), we have

F
(

ρCS
η , ρCS

η′

)
= exp

[
−
(√

η′ −√η
)2NS

4NB + 2

]
(S13)

The QFI then follows as

KCS
η = −4

∂2F
(

ρCS
η , ρCS

η′

)
∂η′2

∣∣∣∣∣
η′=η

=
NS

η(2NB + 1)
. (S14)

The additivity of the QFI for product states [4] and the linearity
of the coherent-state QFI (S14) in the energy imply that (S14) is
also the QFI of a multimode coherent state of total energy NS.
Finally, any classical-state transmitter can be written as a proper
P-representation [7], i.e., in the form

ρ =
∫

CM
d2MαI

∫
CM

d2MαS P(αI , αS) |αI〉 〈αI |I ⊗ |αS〉 〈αS|S,

(S15)

where αS =
(

α
(1)
S , . . . , α

(M)
S

)
∈ CM indexes M-mode coherent

states |αS〉S of S, αI =
(

α
(1)
I , . . . , α

(M)
I

)
∈ CM indexes M-mode

coherent states |αI〉S of I, and P (αI , αS) > 0 is a probability
distribution. An average signal energy constraint of NS implies
that P (αI , αS) should satisfy

∫
CM

d2MαI

∫
CM

d2MαS P(αI , αS)

(
M

∑
m=0

∣∣∣α(m)
S

∣∣∣2) = NS. (S16)

The convexity of the QFI [8], its invariance under adjoining an
idler system in an η-independent state, and the linearity of the
QFI (S14) in the energy then imply that the QFI of any classical
probe Eq. (S15) obeying the constraint Eq. (S16) satisfies

Kcl
η 6

NS
η(2NB + 1)

, (S17)

which is Eq. (20) of the main text.
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