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1. FABRICATIONP-i-n waveguide photodetectors with lateral silicon-germanium-silicon (Si-Ge-Si) heterojunctions werefabricated in CEA-LETI’s cleanroom facilities on a fullyintegrated nanophotonic platform using 200 mm silicon-on-insulator (SOI) wafers and standard complementary metal-oxide-semiconductor tools and processes. The SOIsubstrates consisted in 0.22 µm thick silicon (Si) layers ontop of 2 µm thick buried oxide (BOX) layers. At first, passivenanophotonic components and devices, such asinterconnecting waveguides and fiber-to-chip surfacegrating couplers, were fabricated with 193 nm deep-ultraviolet (deep-UV) optical lithography and dry etching.Afterwards, thermal oxidation of about ~0.01 µm was usedto have a silicon dioxide (SiO2) cap layer prior to ionimplantation. p-type and n-type Si regions were obtained byboron (B) and phosphorous (P) ion implantation. Theconcentration of dopants in p-type and n-type regions werein excess of 1019 at/cm3, the same as used for p++ and n++contacts in Si-based optical modulators. An 0.80 µm thickoxide cladding was deposited on top prior to cavitypatterning. The oxide cladding was completely etched downto the Si surface, followed by Si layer patterning and deep-rib waveguide etching to form cavities with ~0.06 µm Si

floors just above the BOX. A more than a 1µm thick Ge layer was selectively grown inside those cavities with germane (GeH4). After the 450°C growth of a Ge seed, the temperature was ramped up to 750°C and the remainder of the Ge layer grown in a reduced pressure-chemical vapor deposition (RP-CVD) chamber, followed by a 1-hour-long H2 annealing at 750°C to heal defects. A chemical mechanical polishing (CMP) process was used to reduce the Ge thickness down to ~0.26 µm and recover a flat surface. A few micrometers thick oxide cladding was then deposited for Ge passivation and insulation. 0.40 µm × 0.40 µm vias were sub-sequently patterned and etched down to the Si doped regions. Ni-based silicidation was then conducted to improve contact access resistance. At the end, Ti/TiN/W stacks were used as metal plugs. Electrodes consisted of a patterned AlCu layer. 
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