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This document provides supplementary information to Learned Rotationally Symmetric 
Diffrac-tive Achromat for Full-Spectrum Computational Imaging. We provide detailed 
derivation of the rotationally symmetric point spread function (PSF) model. We also provide 
the additional de-tails about the utilized image recovery neural network and the fabrication. 
In addition, we provide the comparison of the proposed Res-Unet recovery with model-
based methods, that under different loss function configurations, and that designed with the 
Zernike base param-eterization, as well as extra experimental results captured with our 
fabricated DA but using a machine vision sensor. 

1. ROTATIONALLY SYMMETRIC PSF MODEL

In the following, we describe the details of deriving Eq. 3 in
main text. We first rewrite Eq. 1 in main text as:
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∣∣∣ 1
λ f

e
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2 f (x2+y2)
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By substituting k = 2π
λ and assuming fx = x

f λ and fy =
y
f λ ,

Eq. S1 can be expressed as:
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Next, we convert the coordinate system from the Cartesian
to polar by substituting fx = ρ cos θ, fy = ρ sin θ, s = r cos φ,

t = r sin φ. Accordingly, we further rewrite Eq. S2 as:
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(S3)

by assuming the height profile of DA is rotational symmetric,
we observe the polar version of the pupil function P(r, φ, λ) is
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independent with φ. Then, Eq. S3 can be rewritten as:
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where J0 is the 0th order of Bessel function of the first kind.
Since the DA is discretized as a number of concentric rings

with a ring width of d, as illustrate in Fig. 2 in main text, the

term P(r, λ)e
ik
2 f r2

can be decomposed to many circ, written as:
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where rm = md (for m = 1, 2, . . .), d is the feature size of DA. The
approximation of Eq. S5 is accuracy when the ring sampling d
sufficiently fine to accurately approximate the additional phase

term e
ik
2 f r2

by e
ik
2 f r2

m . for example d ≤ λ
2NA [1], where NA is the

numerical number of the DA. The circ is the unit circ function,
defined as:

circ(r) =

 1, |r| ≤ 1

0, |r| > 1
. (S6)

By substituting Eq. S5 into Eq. S4, we derive the notations

G(r, λ), K(r, λ) to represent P(r, λ)e
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, respec-
tively, expressed as:
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Eq. S7 can be further expressed as:
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Table S1. Configuration of the base unit of the utilized Res-
Unet. Specifically, “conv-n(a)-k(b)-d(c)” represents a convo-
lution layer with “a” output channels, using a “b × b” kernel,
and using a stride of “c”. Each “Leaky Relu” has the slope 0.2.
Each “Upsampling” represents the nearest neighbor upsam-
pling with a factor 2 followed by a convolution layer with a 3
× 3 kernel.

Layer Convolution layer Activation

Input

0 conv-n32-k3-d1 Leaky Relu

1 conv-n32-k4-d2 Leaky Relu

2 conv-n64-k4-d2 Leaky Relu

3 conv-n128-k4-d2 Leaky Relu

4 conv-n256-k4-d2 Leaky Relu

5-1 conv-n512-k3-d1 Leaky Relu

5-2 conv-n512-k3-d1 Leaky Relu

Upsampling & Concat.

6 conv-n256-k3-d1 Leaky Relu

Upsampling & Concat.

7 conv-n128-k3-d1 Leaky Relu

Upsampling & Concat.

8 conv-n64-k3-d1 Leaky Relu

Upsampling & Concat.

9 conv-n32-k3-d1 Leaky Relu

10 conv-n3-k3-d1 Leaky Relu

Adding with the input

where H(rm, ρ) is expressed as:

H(rm, ρ) =

 1
2πρ [rm J1(2πρr1)− rm−1 J1(2πρrm−1)], m > 1

1
2πρ r1 J1(2πρr1), m = 1

.

(S9)

2. DETAILS OF IMAGE RECOVERY NEURAL NETWORK

The configuration details of the base unit of the image recovery
neural network are presented in Tab. S1.

3. ABLATION STUDY OF LOSS FUNCTIONS

We provide alternative results implemented with the `1 loss and
SSIM loss. We use the same training set, parameters, and net-
work configure except the loss function is changed to `1 loss and
SSIM loss. We assess 15 test images using peak signal-to-noise
ratio (PSNR), structural similarity index (SSIM), and spectral
angular mapper (SAM) [2]. The Gaussian noise with σ=0.003
is added to all sensor measurements. Table S2 summarizes the
average PSNR, SSIM, SAM and Fig. S1 shows an example se-
lected from the test set. We observe that the `2 loss leads to better
results (with the average PSNR improvements of 0.50 dB).
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Table S2. Quantitative evaluation of the averaged PSNR (dB),
SSIM, and SAM over 15 test images resolved with the network
trained with different loss functions.

Loss `1 SSIM `2

Recovery 32.53 / 0.886/ 0.07 32.59 / 0.896/ 0.07 33.09 / 0.892 / 0.07

Fig. S1. Assessment under different loss functions in simula-
tion. We assess the performance of `1 loss, SSIM loss, and `2
loss under same training set, parameters, and network con-
figuration. We show the recovery results of the Res-Unet. The
insert values indicate the PSNR (dB) and SSIM.

4. ADDITIONAL SIMULATION RESULTS

Comparison with alternative image recovery algorithms We show
the comparison among different image recovery methods. Ta-
ble S3 summarizes the averaged PSNR and Fig. S2 visualizes
several examples selected from the test set. We observe that the
score of Wiener filtering is quite low since the recovered images
are noisy (see Fig. S2), although the details and the color fidelity
look good. After further applying a learning-based multi-layer
perceptron (MLP) approach [3], the score shows a gain of 3.33 dB.
However, this score is still significantly lower than that of im-
ages recovered by the proposed Res-Unet (see Fig. S2). These
results validate that the proposed Res-Unet is capable of pre-
serving high-fidelity scene details while suppressing noise in
the meantime.

Table S3. Quantitative evaluation of averaged PSNR (dB) over
15 test images resolved using different recovery algorithms.

Algorithm Wiener filter Schuler et al. [3] Res-Unet

Recovery image 23.38 26.71 33.09

Comparison under different noise levels We provide additionally
results for the performance assessment of the diffractive achro-
mat (DA) designs with noise levels σ=0.006 and σ=0.011. Ta-
ble S4 summarizes the averaged PSNR and Fig. S3 visualizes an
example selected from the test set. We observe that the proposed
DA, in tandem with the Res-Unet, obtains the best performance
under noise levels of 0.003 and 0.006. Note that this performance
improvement becomes less noticeable when the noise level is
increased. Specifically, the PSNR improvement decreases from
1.3 dB to 0.16 dB, and the SSIM improvement decreases from

Fig. S2. Selected examples for performance evaluation of the
image recovery methods in simulation. We compare against
the recovery results of learned recovery (Res-Unet network),
a modified Wiener filter, and a modified Wiener filter com-
bined with a learning-based multi-layer perceptron (MLP)
approach [3]. The insert values indicate the PSNR (dB).

0.015 to N/A. That said, our current end-to-end design frame-
work may only show superior results when deriving DAs for
full-spectrum applications under low and median noise levels,
which are very reasonable for state-of-the-art sensors.

Table S4. Quantitative evaluation of averaged PSNR (dB) ,
SSIM, and SAM over 15 test images resolved with different
lens designs and Res-Unet recovery algorithms at different
noise levels.

Noise Level Fresnel Lens Reference DA Proposed DA

σ=0.003 25.78 / 0.804/ 0. 12 31.79 / 0.877 / 0.08 33.09 /0.892 / 0.07

σ=0.006 25.46 / 0.786 / 0.13 31.35 / 0.865 / 0.08 32.30 /0.874 / 0.07

σ=0.011 24.78 / 0.734 / 0.15 30.38 / 0.840 / 0.08 30.54 / 0.828 / 0.08

Comparison with a hyperspectral diffractive lens We have com-
pared with the DOE designed to better estimate (e.g., hyperspec-
tral imaging) the spectral information as in [4]. We design the
hyperspectral DOE using the method described in the relevant
work [4] with a focal length of 50 mm and an aperture diam-
eter of 8 mm. The design spectrum range is from 420 nm to
699 nm. We use the same training set and parameters to train
the image recovery Res-Unet for this hyperspectral DOE. We
assess 15 test images using PSNR, SSIM, and SAM. The Gaus-
sian noise with σ=0.003 is added to all sensor measurements.
Table S5 summarizes the average PSNR, SSIM, SAM and Fig. S4
shows an example selected from the test set. We observe that the
proposed DA obtains better results (with the averaged PSNR
and SAM improvements of 8.82 dB and 0.06, respectively). As
shown in the right bottom of Fig. S4, the hyperspectral DOE is
designed to distinguish the spectral PSFs as much as possible.
Thus, the resulting blur is very sensitive to the aperture diameter.
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Fig. S3. Selected examples of the assessment of three lens designs with different noise levels in simulation. We show the recovery
results of the Res-Unet. The inset values indicate the PSNR (dB) and SSIM.

In our case, the blur size of the PSFs goes up to approximately
3 mm, which causes image recovery algorithms failing to re-
solve a full-spectrum image. This means for a practical DOE
with an aperture diameter of 8 mm, their design framework fails
to obtain high-fidelity color images.

Table S5. Quantitative evaluation of averaged PSNR (dB) ,
SSIM, and SAM over 15 test images resolved with different
lens designs and different ResUnet recovery algorithms.

Type Hyperspectral DOE Proposed DA

Measurement 17.77/ 0.613 / 0.19 19.90 / 0.657 / 0.14

Recovery 24.27/ 0.714 /0.13 33.09 / 0.892 / 0.07

Comparison with a DOE designed with alternative rotationally sym-
metric base representation We choose the 16 circularly symmet-
ric Zernike bases among the first 150 Zernike terms. For a fair
comparison, we use the same training set, parameters, and net-
work structure to learn the lens. We assess on 15 test images us-
ing the PSNR, SSIM, and SAM. The Gaussian noise with σ=0.003
is added to all sensor measurements. Table S6 summarizes the
averaged PSNR, SSIM, SAM, and Fig. S5 shows an example se-
lected from the test set. Although the learned lens with Zernike

Fig. S4. Assessment between proposed lens designs and the
hyperspectral DOE. The inset values indicate the PSNR (dB)
and SSIM. We show the PSFs of two DOEs at the wavelengths
of 447 nm, 555 nm, and 645 nm at the bottom, respectively.
The PSFs shown here are gamma-corrected for visualization
purpose.

basis shows the best result, it is a refractive lens because of
its continual surface representation. That said, the maximum
height of the lens is around 284 µm, which is 142× as that of the
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designed DOE. If we warp the learned Zernike lens to the same
height of the proposed DA, as shown in the middle of Fig. S5,
the warped Zernike lens becomes a Fresnel lens, further leading
to poor performance.

Fig. S5. Selected examples of the assessment between the pro-
posed DA and the DOE designed with alternative rotationally
symmetric basis. The inset values indicate the PSNR (dB) and
SSIM. Warping means to warp the learned Zernike lens to the
same height of the proposed DA.

Table S6. Quantitative evaluation of averaged PSNR (dB) ,
SSIM, and SAM, over 15 test images resolved with different
lens designs and ResUnet recovery algorithms.

Type Zernike Zernike (warped) Proposed DA

Measurement 27.89 / 0.803/ 0.08 19.58 / 0.647 / 0.17 19.90 / 0.657 / 0.14

Recovery 36.56 / 0.940/ 0.05 19.66 / 0.672 / 0.16 33.09 / 0.892 / 0.07

5. PROTOTYPING

Fabrication details As shown in Fig. S6, the designed DOEs are
fabricated using the imprinting lithography technique. Specifi-
cally, the positive photoresist (AZ-1512, MicroChemicals) is spun
on a titanium-coated glass substrate and is patterned by a direct-
write optical grayscale lithography machine (MicroWriter ML3,
Durham Magneto Optics). Then, the photoresist is developed
with a base developer (MF-319, Microposit) and is used as a mold
to replicate its pattern on polydimethylsiloxane (PDMS, SYL-
GARD 184, Dow). PDMS, a two-part polymer, is mixed at the
standard ratio of 10:1 and degassed in the vacuum. The mixed
PDMS is cured at room temperature for three days with the mas-
ter mold to make the elastomeric mold. The circular aperture
is fabricated with a light-blocking chromium-gold-chromium
tri-layer (50 nm / 100 nm / 50 nm) on a 3 mm thick float glass
substrate (30-773, Edmund Optics) through the lift-off process.

Then, a drop of optically clear UV-curable resin (NOA61, Nor-
land Products) is put between the PDMS mold and the glass
substrate and cured with a mercury vapor lamp after aligning
the pattern with the circular aperture. Finally, the PDMS mold
is gently peeled off to form a patterned clear resin layer on the
glass substrate.

Fig. S6. Fabrication process of our proposed DA.

Prototype camera and experiment setup As shown in Fig. S7, the
fabricated DA is mounted to a 1-inch stand tube and then at-
tached to a Canon T5i DSLR camera body via a customized
printed holder. We capture the PSF of the fabricated DA using a
white LED light source and a 35 µm pinhole attached in front.
The distance between the light source and the front surface of
the fabricated DA is 3 m, and we slightly adjust the gap between
the DA and DSLR sensor to focus at the light source. To obtain a
PSF with a high dynamical range, we capture PSFs with four in-
tegration settings, including 100 ms, 200 ms, 400 ms, and 800 ms,
and then merge them. The measured PSF is used to refine the
image recovery neural network.

Fig. S7. Photographs of the prototype lens and the experimen-
tal setup using a DSLR camera body.

Image recovery network refining In Fig. S8, we show the selected
results with and without the refining of the image recovery
network using the measured PSFs. It is clear that the refining
step leads to an increase of performance. Here, we use a new
RGB dataset [5] since we have replaced the spectral PSFs at
31 wavelengths with the RGB PSF. 20 images are used for the
evaluation and the remaining for refining. Finally, we assess on
20 images with the Gaussian noise level of 0.005 and observe
that both the PSNR and SSIM have indicated the increase from
27.88 dB and 0.774 to 31.03 dB and 0.793, respectively. The visual
performance, regarding color performance and noise issue, has
been significantly improved as well.
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Fig. S8. Selected results with and with out the refining of the
image recovery network using the measured PSFs. The inset
values indicate the PSNR (dB) and SSIM.

6. ADDITIONAL CAPTURED RESULTS

To comprehensively verify the achromatic performance of our
designed DA, we evaluate our designed DA on another machine
vision sensor (Pointgrey Grasshopper3 USB3) that has 1,900 ×
1,200 pixels with the pixel pitch of 5.9 µm. We reimplement
the PSF calibration and refine the image recovery network, as
mentioned in the main text. Figure S9 shows several results
that captured in the real world where the images are displayed
on a display monitor. The details and color are well resolved,
indicating that our jointly designed diffractive lens suits well
over different spectral response curves of sensors due to it is
robust achromatic behavior.
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