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A. Generalized Multiparticle Mie Theory (GMMT) simulations

GMMT is a very fast and accurate method for solving the electrodynamics of a collection of particles making up a cluster.
GMMT works on the principle of generalizing the single particle Mie theory to include arbitrary source illumination
and matching the boundary conditions on multiple particle surfaces. We summarize here the important parts of GMMT;
the complete theory is described in detail elsewhere. [1] All electrodynamic simulations were performed using our open
sourced code MiePy, available online. [2]
Field expansions in GMMT. The incident and scattered fields around particle 9 are expanded into the vector spherical

harmonic wave (VSHW) functions.

K 9

inc (r) = −
#max∑
==1

=∑
<=−=

8�<=

[
?
9
<=T

(1)
<= (r) + @ 9<=S (1)<= (r)

]
(S1)

K 9
scat (r) =

#max∑
==1

=∑
<=−=

8�<=

[
0
9
<=T

(3)
<= (r) + 1 9<=S (3)<= (r)

]
(S2)

The functions T<= and S<= are the electric and magnetic modes, respectively, of order = and azimuthal index <. The
total scattered field at a position r is computed as a sum over individual particle expansions
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For a cluster of particles, the total scattered field can be expanded around a single origin, effectively treating the
cluster as a single scattering object
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where the cluster expansion coefficients, 0<= and 1<=, are obtained by translating the particle expansion coefficients to
the origin using the VSHW function translational addition theorem [3]
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Multipole decomposition of the scattering and absorption cross-sections. With the cluster expansion coefficients
determined, the scattering, extinction, and absorption cross-sections of the entire cluster are given by
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�abs = �ext − �scat (S7c)

Each term in the summation provides the contribution of the given mode to the total cross-section. These equations are
used for the scattered field analysis of the OM gear in Fig. 2(a,b).
Multipole decomposition of the optical angular momentum. The total rate of angular momentum scattered by

the cluster can be obtained by analytically integrating the Maxwell stress tensor around a closed surface containing all
of the particles. [4] The expression for the I-component of the rate of outgoing angular momentum, ¤!I , is
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where Y1 and `1 are the background permittivity and permeability, respectively. This can be related to the scattering
and absorption cross-sections on a term-by-term basis. For a RHC polarized plane wave, ?<= = @<= = 0 if < ≠ 1. So
if < ≠ 1:
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and if < = 1:
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The total rate of outgoing angular momentum is then a sum over all terms
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The net torque on the cluster in response to the outgoing angular momentum contains both spin (internal) and orbital
(external) components

gnetI = ẑ ·
∑
8

r8 × L8 + 38 = − ¤!I (S14)

These equations are similar to those reported by others. [5]



B. Coupling GMMT simulations with Brownian Dynamics (BD) simulations

The electrodynamic force acting on each particle can be determined by integrating the MST around a closed surface,
similar to the optical torque. This can be carried out analytically as a sum over particle expansion coefficients. [4] These
forces can then be used in a Brownian dynamics time-stepping algorithm to simulate the driven and random motion of
the particle system. Brownian dynamics is equivalent to the overdamped Langevin equation
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where r8 is the position of particle 8, W8 = 6c`'8 is the friction coefficient of particle 8 with radius '8 , ) = 300 K is the
temperature of the medium, and (8 (C) is a delta-correlated random normal vector with mean 0 and variance 1. The force
on each particle, L8 , is due to electrodynamic forces (calculated by GMMT) and screened Coulomb interactions. The
screened Coulomb interaction is a pairwise repulsive force given by
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where _� = 27 nm is the Debye length of the solution (used in the experiment), A8 9 is the center-to-center interparticle
separation, and � is a constant. [6, 7]

C. Optical setup: simulation and experiment comparison

The experimental optical setup has a _ = 800 nm laser beam incident on a spatial light modulator (SLM; Meadowlark).
The SLM has a parabolic phase profile (i = Ud2), causing the beam to ultimately be defocused at the sample with
an inward directed phase gradient. [8] A long focal length lens (f1) placed after the SLM is used to reshape the beam
diameter and underfill the back aperture (BA). The beam is slightly diverging at the objective lens and is converging at
the plane of the sample. The optical setup for simulations mimics the experiment one without the need of the first lens
(f1) since the beam diameter can be resized at will.
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Fig. S1. Effective optical setups for simulation (left) and experiment (right). In the
electrodynamics simulations, a parabolic phase profile is used to model the SLM in
experiment. In experiment, the back aperture is underfilled using along a long focal
length lens; this is done in simulation by adjusting the width at the source. Note that
not all optics are shown for the experiment.



D. Collective scattering resonance of OM arrays converges to the lattice plasmon resonance

As more particles are added to a hexagonally ordered optical matter array, the collective scattering resonance (CSR)
becomes spectrally more narrow and approaches the lattice plasmon resonance (LPR). [9] Fig. S2 shows the results
of simulations of 1-19 particles and compares their scattering spectra to that of 331 particles to demonstrate this
convergence.
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Fig. S2. Scattering spectra of optical matter arrays built on a hexagonal lattice. A CSR
appears near 750 nm in the OM arrays consisting of 2-19 particles. In the limit of a
larger lattice (red curve; 331 particles, or 10 filled subshells), the CSR approaches a
narrower resonance as is expected of a LPR.



E. Additional modes scattered by the OM gear

Fig. 2(d-f) in the main text shows the angular distribution of the 3 collective scattering modes of the OM gear that carry
the largest quantities of angular momentum. There are many more modes that arise and contribute to the scattering
cross-section of the CSR; all of the electric modes are shown in Fig. S3. The allowed collective scattering modes obey
the angular selection rule of Eq. (2) in the main text. Modes are ordered from largest (a) to smallest (k) quantity of
angular momentum at the 800 nm incident wavelength. Modes such as e1,1 and e5,1 are responsible for the strong
forward and backward lobes in the total scattering of the OM gear, shown in Fig. 2(c).
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Fig. S3. Far-field scattering patterns for all of the relevant electric modes scattered by
the 7NP OM gear (up to = = 7). They are ordered from largest quantity of angular
momentum (a) to least quantity of angular momentum (k). The value in parentheses is
a normalized measure of the mode’s angular momentum.



F. Analysis of the probe particle

Trapping with an inward phase gradient. Assembly of the OM machine involves adding a probe particle to the OM
gear – the analog of the small gear in the planetary gear machine. Confinement of the probe particle can be achieved
using a combination of intensity and phase gradient optical forces. The focal plane of the incident Gaussian beam can
be defocused beyond the plane of the sample to obtain a parabolic phase profile with an inward phase gradient. This
leads to phase gradient forces that can increase the stability of NP assemblies relative to using just intensity gradient
forces [8]. The phase of a Gaussian beam focused at I = 0 a distance d from the beam’s axis is

i(d, I) = :d2

2'(I) (S17)

where : = 2c=/_ is the wavenumber and '(I) is the beam’s radius of curvature
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and I' = cF2
0/_ is defined as the Rayleigh range and F0 is the beam’s waist radius. The radius of curvature is minimized

when I = ±I', which results in the largest possible phase gradient. We take I = +I' to obtain a maximum inward phase
gradient force in the simulations. An analogous situation is created empirically in the experiments.
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Fig. S4. Comparison of the trapping potentials of monomers, homo-dimers, and
hetero-dimers using a focused beam vs. an optimally defocused (converging towards
I = I') beam with an inward phase gradient. The G-axis values represent the transverse
position of the dimer’s center-of-mass in the optical trap. (a) Trapping potential of a
single nanoparticle for focused (blue) and optimally defocused (orange) beams. (b)
Trapping potentials of a homo-dimer (solid) and hetero-dimer (dashed) for focused and
optimally defocused beams. The work is expressed in units of thermal energy, :�) , for
) = 298 K.

Trapping potentials for a single NP, Fig. S4(a), show that a focused beam has a larger trapping stiffness than the
optimally defocused beam (I = I'). That is, the intensity gradient of light provides better confinement than the phase
gradient of light for a single NP. However, Fig. S4(b) shows that the situation is reversed for the trapping potentials of a
rigid dimer. For a homo-dimer (diameter 150 nm), the defocused beam has a broader but deeper trapping potential. For
a hetero-dimer (diameters 150 nm and 200 nm), there are known non-reciprocal forces that cause the small particle
to ‘chase’ the bigger particle [10]. This phenomena makes the hetero-dimer difficult to trap, but the defocused beam
provides a way to increase the trapping stiffness of these asymmetrical structures.



The OM gear–probe machine is also asymmetrical in shape and will experience these non-reciprocal forces. The
inward phase gradient turns out to be essential to assembling and trapping these machines and enabling their counter-
rotation through electrodynamic driven forces and thermal fluctuations. An example trajectory of the OM machine with
a focused Gaussian beam is shown in Fig. S5. The probe particle quickly escapes from the trap. The OM gear, initially
‘pulled’ away from the center of the trap by the probe, is restored to the center of the trap as the probe particle diffuses
away.
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Fig. S5. Trajectories of the NPs in the OM machine assembled with a focused (I = 0)
Gaussian beam in a Brownian dynamics simulation. Without an inward phase gradient
from a defocused and converging beam, the probe particle escapes the trap. The red x
indicates the center of the optical trap.



Influence of the probe on the OM gear. Ideally, the probe particle has minimal impact on the OM gear structure it
probes. Generally, probe particles with a smaller radius will scatter less and therefor have less of an influence on the
OM gear’s structure. To study this influence, the interparticle separations of the NPs in the OM gear are calculated
in the presence of a probe particle at different radii. This is done by performing a deterministic dynamics () = 0
Brownian dynamics) simulation and extracting the steady state interparticle separations. Fig. S6 shows an increase in
interparticle spacing as the probe particle radius is increased. The blue curve corresponds to the pair of particles in the
OM gear closest to the probe particle; they are deformed to be closer to each other. The interparticle separations that are
increasing with probe size are particle pairs furthest from the probe particle. This shift in interparticle spacing can, in
principle, cause the sign of the torque on the OM gear to switch from negative to positive.
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Fig. S6. An increase in the probe particle’s radius results in larger deformation of
the OM gear. The probe particle electrodynamically interacts with the 7NP OM
gear, resulting in a shift in the interparticle separations of the OM gear. Each color
corresponds to a given pair of NPs in the OM gear.



Effects of a smaller probe particle. The results in Fig. S6 suggest that a probe particle smaller than the other
(' = 75 nm) NPs in the OM gear is preferred since it deforms the gear less than a larger probe. However, Brownian
dynamic simulations () = 298) with a smaller probe (' = 60 nm) particle reveal an undesirable effect: the smaller
probe inserts itself into the gear and expels one of the other particles to be outside the OM gear. This insertion and
expulsion behavior is demonstrated in Fig. S7. Generally, a smaller NP will “chase” a larger NP, so that a smaller probe
particle will always be pushing its way inward until it breaks into the gear. On the other hand, a larger probe particle
will be chased by the smaller gear particles, keeping the probe on the periphery of the gear.
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Fig. S7. A smaller probe particle will insert itself into the OM gear and expel a NP
to be outside the OM gear. (a) Starting a Brownian dynamics () = 298 K) with the
smaller probe particle (orange) outside of the OM gear. (b) After some time, the probe
particle exchanges positions with one of the nanoparticles in the OM gear (blue).

Parameter space search. A parameter sweep over reasonable values was performed to determine the optimal
simulation parameters to obtain a stable, trapped OM machine with counter-rotation. The incident beam power (%)
was varied from 10 mW to 50 mW; the probe particle diameter (�) from 180 nm to 220 nm; the beam waist (F0) from
1200 nm to 2500 nm; the beam defocus (I) from I'/2 to I', where I' is the Rayleigh range. Of 108 simulations with
different parameters, about 10 were stable and showed substantial clockwise thermal hopping of the probe particle. The
other simulations either had too much thermal noise such that the probe escaped while the gear rearranged, or were too
stiff such that the machine was stable but the probe particle could not hop. The best demonstration of counter-rotation
was obtained for the values: % = 40 mW, F0 = 2500 nm, � = 200 nm, and I = I'/1.2.



G. Hydrodynamic coupling effects in the OM machine

Stokesian dynamics is an extension of Langevin dynamics that incorporates the hydrodynamic coupling interactions due
to fluid flow in the medium. [11] In particular, rotation-translation (RT) coupling has been shown to be an important
consideration. [12] In the OM machine, the Ag nanoparticles are spinning with a positive torque due to the incident
spin of the RHC polarized light. This spinning leads to vorticity in the surrounding fluid that can generate additional
translational motion, see Fig. S8(a).

Fig. S8(b) shows the angles of the OM gear and probe, averaged over an ensemble of 20 trajectories. The hydrodynamic
coupling causes the OM gear to rotate with a positive angular velocity, as opposed to the negative angular velocity
without hydrodynamic coupling in Fig. 4(d). However, we still obtain the clockwise biased hopping of the probe particle.
Note that the hydrodynamic interactions implemented here do not take into account the water–glass interface, which
might have a significant effect. [13]
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Fig. S8. Hydrodynamic interactions in the OM gear – probe particle system. (a) The
spinning of the particles inside the OM gear leads to translational fluid flow at the probe
particle (hydrodynamic RT coupling). (b) Ensemble results (over 20 trajectories) for
the angles of the OM gear and probe over time.



H. Experimental results of the 7NP OM gear

Fig. S9 demonstrates experimentally the counter-rotation for a 7NP OM gear–probe machine. While the counter-rotation
was observed in this case, the effect was less ubiquitous than the 8NP OM gear demonstrated in Fig. 4.

probe

gear

Fig. S9. Experimental observation of the counter-rotational dynamics of the 7NP
OM gear–probe machine. (left) Still-image and superimposed trajectories of the gear
(yellow for NP) and probe (orange). (right) Angular trajectory of the OM gear and
probe over time.

I. Analysis of the e7 mode with the probe and with thermal fluctuations

While the gear has a perfect 6-fold symmetry, the gear + probe system does not. If the probe were a small perturbation,
this would not significantly change the angular momentum scattered by the array. However, since the probe is larger
particle its causes a large perturbation. Fig. S10 shows the effect the probe has on the amount of angular momentum
scattered into the e7,7 mode, an amount that is not insignificant.
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Fig. S10. Effect of the probe on the e7 mode of the gear. (left) The angular momentum
carried by the e7,7 mode of the entire array with and without the presence of the probe
particle. (right) The angular momentum carried by the e7,< modes of the machine with
the probe where < does not satisfy the angular momentum selection rule (< ≠ -5,1,7).
The machine without the probe does not carry any angular momentum in these modes.



Additionally, there are new angular momentum channels the array can scatter into since it is no longer 6-gold
symmetric. The angular momentum carried in the e7,< modes for the gear–probe system is shown in Fig. S10. For the
gear-only system, these modes would be prohibited and hence carry no angular momentum. The < = 5 and < = 3
contributions are largest, but still only carry about 50 × less than the amount in the e7,7 mode.
Fluctuations of the particles in the gear also have an effect on the quantity of angular momentum it scatters and

therefore the overall efficiency of the machine. Fig. S11 shows the fluctuations of the angular momentum in the e7,7
mode over a short period of simulation time for the gear. The maximum possible angular momentum is scattered when
the gear has perfect hexagonal (6-fold) symmetry. The average amount of angular momentum scattered while fluctuating
is about 85% of its optimal value.
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J. High-index dielectric OM machine

It is possible to build an OM machine out of dielectric particles instead of plasmonic particles. High-index dielectric
such as silicon (Si) are good candidates due to their enhanced scattering and sharp resonances. At _ = 800 nm, silicon
can be approximated with a constant index of refraction = = 3.7. Fig. S12(a) shows the construction of the Si machine,
where the gear particles are now larger than the probe particle. Unlike the plasmonic machine, this machine is stable
and does not suffer the same intrusive dynamics as shown in Fig. S7. This unique behavior is likely due to the presence
of a significant magnetic dipole mode for Si nanoparticles, see Fig. S12(b).

Fig. S12. Realization of a silicon optical matter machine in simulation. (a) Snapshot of
the machine with a gear made of 90 nm radius Si particles and an Si probe of radius
75 nm. (b) Multipolar scattering of the 90 nm radius Si particle. (c) Angles of the gear
and probe over a simulation.

Angles of the gear and probe in the Si machine are shown in Fig. S12(c). Similar to the plasmonic machine, the probe
particle only hops in the counter-clockwise direction. Unlike the plasmonic machine, the gear spins much faster and
with a negative torque such that counter-rotation of the gear–probe machine is not observed.



K. Efficiency of the stochastic optical matter machine

Due to the stochastic nature of the OM machine, the machine does not operate at very low or very high laser power
density. If the power density of the trapping laser is too low, thermal fluctuations dominate the particle trajectories
as shown in Fig. S13(a). If the power density is moderate, the electrodynamic forces become significant relative to
thermal fluctuations, allowing the machine to counter-rotate as shown in Fig. S13(b). If the power density is too high,
counter-rotation is not possible since the thermal fluctuations are needed for the machine to operate and the arrays
rotates as a rigid lattice as shown in Fig. S13(c).

a) b) c) d)

Fig. S13. Demonstrating the stochastic nature of the optical matter machine. (a) OM
machine at a low laser power is dominated by thermal fluctations. (b) OM machine
at a moderate laser power is operable and exhibits counter-rotation. (c) OM machine
at a high laser power is driven with one handedness and does not counter-rotate. (d)
Efficiency of the Si dielectric machine as a function of the incident power. Each circle
is a simulation result, with 5 simulations performed per power; the solid line is an
average fit.

The efficiency of the OM machine can be defined as the rate of thermal hopping of the probe around the OM gear

E = lim
C→∞

(
q2 (C) − q1 (C)

C

)
(S19)

In general, E depends on the power of the incident beam. Fig. S13(d) shows E(%) of the Si dielectric machine introduced
in the previous section. As the power goes to zero, E(%) goes to zero since the machine is not operable if the gear is not
a stable unit. On the other hand, as the power gets larger E(%) goes to zero since some thermal energy is required for
the probe to hop and be driven. Consequently, the machine’s efficiency is a maximum at some finite power. This type of
power dependence is expected of stochastic machines.
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