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Device Fabrication. 
The updoped InP/InGaAs epitaxial layers were grown on an undoped InP substrate 

by MOCVD at OEpic Semiconductors, Inc. Fabrication on the epitaxial wafer began with a 
selective wet etch (HCl-based) of InP in the emitter region, leaving the InGaAs layer exposed. 
Next the phase shifter electrodes were formed by deposition and lift-off of Cr/Au 
(5nm/70nm). Then the emission gratings were patterned by e-beam lithography and dry 
etched 600 nm into the InGaAs layer by Cl2/N2 inductively coupled plasma reactive ion etch 
(ICP-RIE). Subsequently the waveguides were formed by Cl2/CH4/H2 ICP-RIE, etching 
through the InP and InGaAs layers and into the InP substrate to a total depth of 5.5 μm. The 
waveguides were then passivated in the phase-shifter region with 2 μm SiO2 (for 1 µm 
sidewall coverage), and contact openings to the electrodes were opened by CHF3/Ar reactive 
ion etching. A sequence of Ti/Au (10nm/200nm) depositions (one normal and four oblique 
for continuous coverage across waveguide ridges) was carried out for creating the overlay 
from the contacts to the probe pads. Following device fabrication, the chip was cleaved at the 
input to allow end-fire coupling and affixed with indium to an aluminum carrier block for 
both electrical grounding and thermal heat sinking. 

Phase shifting characterization. 
A symmetric Mach-Zehnder interferometer was fabricated on the same chip as the 

OPA devices for phase shifting characterization. Fig. S1(a) shows the device. Laser, stage, 
lens and camera are the same as described below in “Beam steering test setup.” Input light 
was end-fire coupled into the cleaved facet on one side of the chip, and the output light from 
another cleaved facet on the other side of the chip was viewed and measured with the mid-
infrared camera (input and output facets were offset to avoid stray input light blinding the 
output). One arm of the MZI was biased by a contact probe and the substrate was grounded. 
The optical output vs. input electrical power is shown in Fig. S1(b), from which we estimate 
π-phase-shift to occur at ~225 mW electrical power. 

The device suffered from parasitic resistances. In our design, ideally, the main 
resistance is through the undoped waveguide ridge. However, our particular substrate was 
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Comparisons with other material platforms. 

As discussed in the main text, the main advantage of a beam steerer fabricated on an 
InP-based platform is its potential for monolithic integration with high power QCLs, where 
reliability from thermal mismatch could be an issue with other (hybrid) systems. Apart from 
this benefit, there are other pros and cons associated with the choice of material system. 

In comparison to waveguide/cladding systems of higher-index-contrast, the use of 
the low-index-contrast InGaAs/InP system will typically necessitate larger electrical steering 
power (and associated heat production) during the steering process (though further 
investigations and optimizations of phase shifting technologies are needed to fully assess the 
situation). 

However, the lower-index-contrast is expected to permit operation to higher optical 
powers, since the modal profile can extend further into the cladding. To quantify the effect, 
we employ the mode’s effective area Aeff, which provides a measure of the spreading of 
mode’s energy. Table S1 presents a comparison of effective modal areas of our system with 
two other prominent mid-IR systems—Si/SiN and Ge/Si. The values were obtained from a 
mode solver (Lumerical) of ridge waveguides of equal cross-sectional areas (A = 1.8 x 1.8 
μm2). The mode profiles are shown in Fig. S2. For InGaAs/InP, in comparison to the other 
two systems, the results indicate ~20% greater modal spread, i.e. the approximate gain in 
optical power handling. 
 

Table S1:  Effective modal areas of selected material systems. 
InGaAs/InP Si/SiN Ge/Si 

n @ λ=4.6μm 3.42/3.09 3.42/2.36 3.98/3.42 
Aeff (μm2) 3.16 2.63 2.50 
Aeff/A 0.98 0.81 0.77 

 

 
Fig. S2.  Simulated fundamental TM mode profiles for three core/cladding material systems:  InGaAs/InP, Si/SiN, 
Ge/Si. The same dimensions are employed for each case: core 1.8 x 1.8 μm2, sub-cladding 1.8 x 1.0 μm2. 

In regards to lateral steering range, InGaAs waveguides can be expected to perform 
on par with Si waveguides, since the channel pitch is dictated by the horizontal index 
contrast, which when the waveguides are separated by air will be similar for both cases since 
their indices are nearly equal. In contrast, Ge waveguides will have an advantage here with 
their higher index. 
 
 
 
 
 



 
 
Comparisons with other non-mechanical beam steerers in the 3–5 μm spectral window. 

Table S2 presents a comparison of our non-mechanical beam steerer with other 
selected demonstrations in the 3–5 μm spectral window. Each has its pros and cons, and 
generally, as the technologies mature, each one may be appropriate for a certain application. 
The diffractive waveplate and FT-OPO-based devices will likely be limited to bulk optics. 
The SEEOR may see use in a component-packaged device. The Ge/Si OPA may lead to 
hybrid integration with low power sources. And finally, reiterating, our InP-based OPA is the 
only one with potential for integration with high power QCL sources. 

 
Table S2: Non-mechanical beam steerers in the 3–5 μm spectral window. 

Technology System 
Steering 

Range 
Resolvable 

points 

Electrical 
Steering 
energy 

Optical 
Insertion 

Loss 
Response 

timea Ref. Diffractive waveplate LC (UCF-M3) 7.6° 2 Vdrive = 80 Vrms 0.1 dB ~s [1] AO cell FT-OPO TeO2 AO scanner, KTA crystal 2° x 2° 46 x 46 PRF = 2 Wb 16 dB ~μs [2] SEEOR LC (custom)/As2Se3/As2S3/Si 14° x 0.6° 28 x 2 Vdrive up to 500 V 15 dB n.d. [3] 12-channel OPA Ge/Si 45° x 12° 15 x 67 Pπ = 52 mW n.d. ~ms [4] 32-channel OPA InGaAs/InP 23° x 9° 38 x 15 Pπ = 225 mW 18 dB ~ms this work 
 
a estimates based on steering technology, b from AO cell specification sheet, LC = Liquid Crystal, AO = Acousto-
Optic, FT-OPO = Fourier Transform Optical Parametric Oscillator, SEEOR = Steerable ElectroEvanescent Optical 
Refractor, n.d. = no data or unknown 
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