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Fig. S1. Deep back-projection network (DBPN) as the resolver of our DSP-Net. a, The 3D 
DBPN architecture that contains several up-projection and down-projection units. Each 
convolutional layer in the units is characterized by the number of the filters n, the filter size f 
and the stride s. b, The structure of an up-projection unit that up-scales the size of input by a 
factor of 2 in each dimension. c, The structure of a down-projection unit that down-scales the 
size of input by a factor of 2 in each dimension. d, The structure of a dense projection block. It 
contains a dense down-projection unit, a dense up-projection unit and their concatenations. The 
“-” and “+” in the circle denote an element-wise subtraction and addition operation, 
respectively. e, The structure of a dense down-projection unit with an additional convolutional 
layer added, as compared to the regular down-projection unit. f, The structure of a dense up-
projection unit with an additional convolutional layer added, as compared to the regular up-
projection unit. Each convolutional layer uses the rectified linear unit (ReLU) as the active 
function. 
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Fig. S2. Residual dense network (RDN) as the interpolator of our DSP-Net. a, The 3D RDN 
architecture that contains several residual dense blocks and sub-voxel convolutional layers. b, 
Details of a sub-voxel convolutional layer. Each sub-voxel convolutional layer interpolates the 
input image by a factor of 𝑟 in all 3 dimensions. The following convolution layer with 𝑟  
channels generates 𝑟   feature maps based on variant kernels. These feature maps are then 
integrated into a single channel, with adjacent channels merged into one to increase the size of 
the height, width and depth. Assuming that the single-channel input has a size of 𝑤 × ℎ × 𝑑 
voxels, the final output has a size of 𝑤 × 𝑟) ∗ ℎ × 𝑟) ×(𝑑 × 𝑟) voxels. c, The structure of 
a residual dense block in the RDN. The output of each convolutional layer is activated by ReLU. 
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Fig. S3. DSP-Net recovering high-resolution details and suppressing background noises 
for the LSFM image of mouse brain vessels. The addition of the resolver together with the 
presence of intermediate result MR’ in our DSP-Net can substantially enhance the potential 
signals while suppressing the background noises for the 3.2× LR inputs. As a result, the DSP-
Net can finally restore more vessel structural details from the same raw LR inputs, as compared 
to the one-stage RDN which directly infers the outputs from the LR inputs. Both the RDN and 
DSP-Net results are compared with the HR references (12.6× images). a, The 3.2× inputs. b, 
The MR’s by the resolver of the DSP-Net. c, The RDN outputs. d, The outputs of the standard 
one-stage RDN network. e, The 12.6× as the ground truths. Scale bars are 10 μm. 
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Fig. S4. Misalignments in 3D registration of LR and HR 3D images of mouse brain 
neurons experimentally obtained by 3.2× and 12.6× Bessel sheet modes. We registered the 
3.2× LR and 12.6× HR 3D image stacks (500 × 500 × 400 µm volume) of cerebellum using 
Fiji registration plugin. The results shown in a and b, however, are far below the criteria of 
voxel-wise alignment, which is required by the neural network training. a shows the 
overlapping of the 3.2× (red channel) and 12.6× (green channel) image stack after registration 
using rigid model. While the neuronal signals at the most superficial layer (z = 0 µm, a1) of the 
registered volume are well aligned, the signals at the deepest layer (z = 400 µm) show obvious 
misalignment. This issue also exists in the 3D registration result by affine mode (b). It’s known 
that the varying aberrations under different magnification factors could contribute to the 
difficulty for accurate image registration. In addition, the significant resolution gap in three 
dimensions also brings extra difficulty for highly-accurate alignment. As shown in c, the 3.2× 
LR slice obtained by thick 2.7-µm light-sheet excitation contains excessive signals (blue and 
orange boxes in c1) which are absent in the HR slice obtained by thinner 1.3-µm light-sheet 
excitation (blue boxes in c2). Scale bars are 50 µm in a to c, and 10 µm in insets. In our study, 
considering the abovementioned pitfalls for highly-accurate registration of measured HR and 
LR 3D images, we thus used half-synthetic data generated by our degradation model for the 
DSP-Net training. 
  



7 
 

 

Fig. S5. Comparison between the DSP-Net and other state-of-the-art networks for high-
throughput LSFM imaging of mouse brain. We applied DSP-Net to the recovery of a mouse 
cortex region originally imaged with 3.2× Bessel sheet, and compared the results with those 
from current one-stage networks. All the networks were trained on the same dataset with the 
same hyper-parameters (e.g., learning rate, batch size and epochs). Considering the U-Net 
doesn’t up-scale the image size, its resolution enhancement process was performed on the 
bicubic interpolation of the inputs. a, The MIPs in xy planes of the selected region (200 × 200 
× 200 μm) by 3.2× Bessel sheet + deconvolution, 3.2× Bessel sheet + DSP-Net, 3.2× Bessel 
sheet + DBPN, 3.2× Bessel sheet + RDN, 3.2× Bessel sheet + U-Net, and 12.6× Bessel sheet. 
b, The MIPs in xz planes of the selected region (200 × 200 × 200 μm) by 3.2× Bessel sheet + 
deconvolution, 3.2× Bessel sheet + DSP-Net, 3.2× Bessel sheet + DBPN, 3.2× Bessel sheet + 
RDN, 3.2× Bessel sheet + U-Net, and 12.6× Bessel sheet. Two small region-of-interests (ROIs) 
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in xy and xz planes were selected to calculate the pixel-wise difference between the 
reconstruction results by each method and the 12.6× HR references (insets). The 3.2× LR 
images were first interpolated into the same size as the HR references, to calculate the pixel-
wise difference. c~d, As compared to other state-of-the-art network methods, DSP-Net showed 
minimum reconstruction errors, as indicated by the lowest normalized mean square error 
(NMSE) and highest structural similarity (SSIM) values. e, DSP-Net resolved finest neuronal 
structures while achieved the highest signal-to-noise ratio (SNR). The number of fitting 
parameters, which also indicated the size of network, was 779K for DPBN, 2276K for RDN, 
3055K for DSP-Net and 16482K for U-Net (3D version based on CARE implementation), 
respectively. Scale bar, 50 μm. 
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Fig. S6. Comparison between the DSP-Net and other state-of-the-art networks for 
imaging microtubules of U2OS cell beyond diffraction limit. a, We recovered a low-SNR 
diffraction-limited 3D image of U2OS cell (60× Bessel sheet) using DSP-Net, RDN, DBPN, 
U-Net, and finally compared the results with the 3-D SRRF result (xy planes in a, and xz planes 
in b). The error maps shown in the 2nd and 4th rows were generated by computing the pixel-
wise difference between the outputs of each method and the 3-D SRRF results. The LR images 
were first interpolated into the same size as the HR references, to calculate the pixel-wise 
difference. As compared to other state-of-the-art network methods, the DSP-Net achieved 
highest-resolution, highest-fidelity (c and d) and highest-SNR (e) recovery for the diffraction-
limited, low-SNR input. Scale bar, 2 μm. 
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Fig. S7. DSP-Net reconstruction of neurons in whole mouse brain. The neuronal signals in 
a macro-scale whole brain show complicated distribution patterns as well as various intensities. 
Our DSP-Net can overcome these difficulties and restore high-quality signals at different areas 
of whole brain. a, The volume rendering of a DSP-Net reconstructed whole mouse brain with 
neurons labeled with GFP. b, The transverse (xy), coronal (xz) and sagittal (yz) planes of the 
brain, showing the complex signal distributions inside. c-d, Magnified views of four small 
ROIs in cortex (yellow), cerebellum (green), striatum (yellow) and hippocampus (red) regions, 
respectively. The raw brain images were rapidly acquired in merely ~6 minutes with using a 
3.2× low-magnification objective plus a relatively thick 2.7-μm light-sheet illumination. The 
significant improvement by DSP-Net recovery allows the revealing of various neuron 
types/structures (dendrites of pyramidal neurons in c, astrocytes in d) at single-cell resolution 
(~1 μm).  
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Fig. S8. DSP-Net reconstruction of single cell beyond diffraction limit. A U2OS cell was 
imaged by high-magnification Bessel light-sheet microscopy and super-resolved by our DSP-
Net. a, 3D rendering of the whole cell. b, Slices through the cell along the planes. Scale bar: 
10 μm.    
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Fig. S9. Requirement of axial scanning in the C. elegans Imaging. We imaged the intestinal 

auto-fluorescence signals (with constant intensities) in freely moving C. elegans by 20× 
objective (Olympus, XLUMPLFLN20XW, 1.0 NA) with keeping the objective at a single focus 
plane. Due to the movement of the C. elegans, some signals defocus with obvious intensity 
change (indicated by the arrows), preventing the accurate tracking of the signal. Therefore, to 
record the 3D, time-varying Ca2+ signals accurately, it’s necessary to rapidly scan the worm 
along z-direction. Scale bar: 40 μm. 
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Fig. S10. Verifying the accuracy of the Ca2+ signals reconstructed by DSP-Net. To verify 

that our DSP-Net provided quantitatively-accurate resolution-enhanced images, we generated 
LR 3D movie of a string of point-like signals with time-varying positions and intensities, to 
simulate the ground truth status of a GCaMP6-labelled acting worm. We then resolved the LR 
video using the DSP-Net, and analyzed the correlation coefficient between the time-varying 
Ca2+ intensity of the LR signals and the DSP-Net reconstructed signals. The normalized 
intensities from three signal points in both raw video (blue) and SR video (red) were plotted 
against time. The DSP-Net results provided highly similar intensity fluctuation as compared to 
the raw signals, with showing correlation coefficients high than 90%. Therefore, we verified 
that a quantitatively accurate reconstruction of 3D signal intensities could be achieved by DSP-
Net. 
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Fig. S11. Cross-sample cross-modality applications of the DSP-Net. We trained two DSP-
Nets, termed DSP-neuron and DSP-ER, using data from the neurons of mouse brain (3.2× 
Bessel sheet as LR versus 12.6× Bessel sheet as HR) and endoplasmic reticulum (ER) of U2OS 
cell (diffraction-limited 60× Bessel sheet as LR versus 60× SRRF as HR), respectively. Then, 
we applied both networks to the resolution enhancement of a variety of biological samples, 
including the same types of mouse brain neurons and cell ER, as well as disparate types of 
mouse brain nuclei, mouse brain vessels imaged by 3.2× Bessel sheet, and actins of 3T3 cell 
imaged by 20× Bessel sheet. The MIP projections of the xy (left) and yz (right) planes from LR 
images, DSP-neuron reconstructions, DSP-ER reconstructions, and HR images are shown in a 
to d, and e to h, respectively. Both DSP-neuron and DSP-ER showed cross-sample cross-
modality resolution enhancement capabilities for all the samples. However, the DSP-ER still 
performs better on the line-like structures of cells, such as ER (4th row) and actins (5th row), 
while the DSP-neuron shows higher-fidelity recovery for mouse nuclei (2nd row), neurons (1st 
row), and vessels (3rd row), in which the distributions of the signals were more diversified into 
point-like, line-like and belt-like shapes. These comparisons also indicated the limit of the 
cross-sample cross-modality capabilities of the network.  
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Fig. S12. Large-scale Bessel light-sheet setup for imaging neurons / vessels / nuclei in 
mouse brain. a, Photograph of our home-built large-scale Bessel light-sheet microscope with 
thin-and-wide Bessel sheet illumination (1.3 to 5 μm) and zoomable FOV (1.26 to 12.6×). b, 
Photograph of the customized sample holder that clamps the whole clarified mouse brain and 
dipped it into refractive index matching solution (RIMS). c, The work status of the Bessel sheet 
imaging of mouse brain. A scanned Bessel beam is forming a thin light-sheet to illuminate the 
brain. The rolling shutter of the camera was tightly synchronized with the scanning of Bessel 
beam, to eliminate the excitation from the side lobes. 
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Fig. S13. High-magnification Bessel light-sheet setup for imaging ER / actins in U2OS and 
3T3 cells. a, Photograph of our home-built high-magnification Bessel light-sheet microscope. 
b, The work status of the Bessel sheet imaging of single cell. c, The customized sample holder 
that clamps the glass slide with cell attached. 
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Fig. S14. High-speed Gaussian light-sheet setup for imaging freely-moving C.elegans. a, 
Photograph of plane illumination path, which generates a ~10 μm Gaussian light-sheet using a 
line-focusing cylindrical lens. b, The customized sample holder for mounting the microfluidic 
chip, inside which the worm can freely move. 
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Table S1. Parameters in imaging experiment and network training 
 

 
 
  

Sample Brain neurons Brain vessels 
Brain cell 

nuclei 
Microtubules (U2OS) 

Endoplasmic 
reticulum (U2OS) 

C.elegans 

Imaging mode Bessel sheet Confocal Bessel sheet Bessel sheet Nikon-NSIM Bessel sheet Gaussian sheet 

Magnificati
on / NA 

HR 
12.6× / 0.5 

1.3-μm 
sheet 

12.6× / 0.5  
(resampled from 

16×/0.8) 

12.6× / 0.5 
1.3-μm sheet 

8× / 0.38 
1.3-μm 
sheet 

SRRF  3D SIM SRRF Synthetic data 

LR 
3.2× / 0.27 

2.7-μm 
sheet 

3.2× / 0.27  
(degraded from 

16×/0.8) 

3.2× / 0.27 
2.7-μm sheet 

2× / 0.2 
2.7-μm 
sheet 

60×/1.1 
0.8-μm sheet 

100×/1.49 
60×/1.1 

0.8-μm sheet 
4×/0.28 

10-μm sheet 

Voxel size 
(μm) 

HR 0.5 × 0.5 × 1 
0.8 × 0.8 × 

1 
0.055×0.055×0.15  0.03×0.03×0.1  0.055×0.055×0.15 0.41×0.41×1.1 

LR 2 × 2 × 4 
3.25 × 3.25 

× 4 
0.11×0.11×0.3  0.06×0.06×0.2  0.11×0.11×0.3 1.63×1.63×4.5 

Optical 
resolution 

(μm) 

HR 0.62 × 0.62 × 2.7 1 × 1 × 2.7 / 
0.105 × 0.105 × 

0.13 
/ / 

LR 1.15 × 1.15 × 1.3 
1.89 × 1.89 

× 1.3 
0.29 × 0.29 × 0.8 0.21 × 0.21 × 0.27 0.29 × 0.29 × 0.8 1.11 × 1.11 × 10 

Diffraction index 
1.56 

(BABB) 
1.33 (water) 1.56 (BABB) 1.33 (PBS) 1.33 (PBS) 1.33 (PBS) 1.41 (56% glycerin) 

Frame rate 
HR 5 fps 

1 fps 
5 fps 0.167 fps 0.167 fps 0.167 fps NA 

LR 20 fps 20 fps 5 fps 5 fps 5 fps 400 fps 

Training data Brain neurons 
Brain 

vessels 
Brain cell nuclei Microtubules (U2OS)  

Endoplasmic 
reticulum (U2OS) 

C.elegans 

Training 
patch size 
(voxels) 

HR 80 × 80 × 80 96 × 96 × 32   64 × 64 × 24  96 × 96 × 40 

MR 
& LR 

20 × 20 × 20 48 × 48 × 16   32 × 32 × 12  24 × 24 × 10 

Training pairs 1137 696 424 112 

Training time 13.75 h (500 epochs) 4.99 h (100 epochs) 7.01 h (200 epochs) 3.08 h (110 epochs) 

Volume size 
10 × 8 × 5 

mm 
0.63 × 0.63 × 0.3 mm 10 × 8 × 5 mm 

5 × 8 × 5 
mm 

30 × 30 × 21 µm 3328 × 832 × 58 µm 
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Table S2. Throughput comparison in the imaging of mouse brains. 
 

 3.2× 3.2×（DSP-Net） 6.4× 12.6× 

Voxel size 2.03 μm×2.03 μm×4 μm 0.508 μm×0.508 μm×1 μm 1.015 μm×1.015 μm×1 μm 0.516 μm×0.516 μm×1 μm 

Resolution 4.06 μm×4.06 μm×8 μm 1.016 μm×1.016 μm×2 μm 2.03 μm×2.03 μm×2 μm 1.032 μm×1.032 μm×2 μm 

3D 
resolution 

0.0078125 μm-3 0.0625 μm-3 0.5 μm-3 0.5 μm-3 

Acquisition 
time 

6 min (20 fps)  6 min 167 min (10 fps) 1200 min (5 fps) 

Acquisition 
Throughput 

83 megavoxels/s 5.4 gigavoxel/s 41.5 megavoxels/s 20 megavoxels/s 

Imaging 
Speed 

1.34×109 μm3/s 1.34×109 μm3/s 4.2×107 μm3/s 5.2×106 μm3/s 

Stitching 
time 

2 h 2 h 5 h 15 h 

Data storage 150 Gb 3 Tb 500 Gb 3 Tb 
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Table S3. Throughput comparison between SRRF and DSP-Net in the imaging of 
U2OS cells.  
 

 SRRF DSP-Net 

Imaging time 19.40 s × 30 19.40 s 

Reconstructing time ～480 s 24.57 s 

Total time ~1062 s 43.97 s 
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Note S1. Implementation of DSP-Net.  
This note elucidates the complete pipeline of DSP-Net processing. This deep learning 
based procedure can be roughly divided into three parts, as 1. Pre-preparation of 
training dataset, 2. Neural networks training, and 3. Resolution-enhancement inference.  
1. Pre-preparation of training dataset  
The training data for the DSP-Net are semi-synthetic, with either the LR inputs or the 
HR targets being generated computationally. In the former case, the HR 3D images are 
obtained via experiments, e.g., the 12.6×/0.5 Bessel sheet images of the mouse brain, 
while their LR pairs are generated using the abovementioned degradation model. For 
the single cell imaging, when the HR images beyond diffraction limit can’t be acquired 
directly via experiment, we obtain them via computing a sequence of LR images (by 
60×/1.1 Bessel sheet) using SRRF, and thereby pair the synthetic SRRF image with the 
LR measurements. As an intermediate part that bridges the significant resolution gap 
between the HR and the LR images, the MR images are usually down-sampled from 
the HR images. We use functions in MATLAB program to allow the easy operations 
of these image pre-preparation steps, where the image degradation is accomplished via 
applying the “imnoise” function followed by “imgaussfilt3” function, and the down-
sampling is accomplished via applying “matrix re-slicing” function. Furthermore, 
considering the memory limits of the GPUs and the quality requirement for a high-
accuracy mapping, the prepared 3D image pairs need to be further diced, normalized, 
and screened to generate small blocks suited for in-parallel network training on 
multiple GPUs. We also provide a program with GUI to readily execute these steps. 

 

Note Fig. S1. GUI of training dataset preprocessing program. The program integrates the 



22 
 

following steps to generate appropriate 3D image blocks suited for DSP-Net training. a, 
Cropping a large-scale image stack into a number of small blocks. The size of each block and 
the overlap between the adjacent blocks (in voxels) are defined by user. b, Image normalization. 
The “None” option means the normalization is simply skipped. The “by Stack” option means 
the normalization is applied on the entire large-scale stack, while the “by Block” means that 
each subdivided block is normalized separately. c, Data screening. If the ratio button “save all” 
is unchecked, the program will delete the blocks where the maximum pixel values are smaller 
than the pre-set “threshold” value. 
 

2. Network training 
The DSP-Net uses the paired LR-HR image blocks for following iterative training. At 
each iteration, the DSP-Net takes one or several pairs of the training data, known as a 
“batch”, to evaluate the loss functions and the corresponding gradients of the trainable 
parameters (i.e., the weights and the biases of the convolutional layers), and update 
these parameters along the minus direction of their estimated gradients. The training 
process goes through one “epoch” with finishing the calculation of all the batches, and 
repeats itself from the first batch for next new epoch. Usually, 20% images are reversed 
as the “testing data”, for validating the performance of the network during training. 
When one epoch is finished, the network calculates the loss of the testing data, and 
saves the parameters of current model until the testing loss reaches its minimum. The 
training process lasts until either designated number of epochs are finished, or the 
model is not updated after a certain number of epochs. The DSP-Net finally converges 
to its best performance with the optimal model parameters recorded. 
 
3. Raw data inference  
The inference is based on a well-trained DSP-Net, and 3D low-resolution 
measurements of the samples. The network first reads the raw input images with 
automatically splitting them into small blocks according to the memory limit, and 
normalizing them into appropriate intensity scale. Then, with applying the optimized 
parameters obtained by previous training, the network deduces the resolution-
enhanced output blocks and automatically stitches them back into a complete volume.  
 
4. Image normalization 
Before the images were fed into DSP-Net, they were normalized as following: 𝑥 = 𝑥 𝑚𝑎𝑥/2 − 1 
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Where x is the pixel intensity and max is the maximum intensity of the entire image (255 
for 8-bit images and 65535 for 16-bit images). The pixel intensities of the images were 
then re-scaled into [-1, 1]. 
After being processed by the DSP-Net, the outputs were normalized by: 

  𝑥 = 𝑥 + 1) × 𝑚𝑎𝑥2  

And the pixel intensities were re-scaled to [0, 255] or [0, 65535].  
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Note S2. Image degradation model.  
The synthetic LR images for network training were artificially generated using a 
degradation model, which simulates the optical blurring of microscope and 
pixelization of camera. The implementation process can be described as following 
steps: 
 
1. Gaussian blur: 
According to the optics diffraction theory, an infinite small point would be blurred to 
a diffuse spot (Airy disk) known as the point spread function (PSF). Its radius of the 

first dark ring is given by 𝜎 = . . The lateral intensity distribution of the 3-D 

PSF in our optical systems conforms to the 1-order Bessel function and can be 
approximated to a Gaussian functions (Note Fig. S2). The axial intensity distribution 
of the Bessel beam conforms to the 0-order Bessel function, which can also be 
simulated by a Gaussian function. The radius of the first dark ring is a half of light-
sheet thickness. Thus, the resolutions of the detection objective lenses used for HR and 
LR imaging can be represented by the radius of the corresponding Gaussian spots as: 𝜎 = 0.61𝜆𝑁𝐴   
and 𝜎 = 0.61𝜆𝑁𝐴   
 
In the degradation model, the radius of the Gaussian function for blurring the HR can 
be deduced from: 𝜎 = 𝜎 − 𝜎  

 
Note Fig. S2. Approximation of the Airy pattern using a Gaussian profile. A radial cross-
section through the Airy pattern (solid curve) and its Gaussian approximation (dashed curve). 
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2. Down-sampling 
The Gaussian blurring applied in the first step represents the optical blurring caused 
by the change of objective NA for LR and HR imaging. The second step of down-
sampling operation accounts for the different degrees of pixelization by camera when 
sampling the optically-blurred object under different magnification factors, and by the 
different z step size when using different thickness of light-sheet illumination. As a 
reference, for generating the synthetic LR brain images using the HR images 
experimentally acquired by 12.6× objective plus 1-μm z-scan, we down-sampled the 
blurred HR image by 4 times in each dimension using a pixel average method, to 
simulate the LR measurement based on 3.2× objective plus 4-μm z step size. 
 
3. Noise addition 
At last to simulate the noise level of LR measurements, we add noises to the degraded 
images, including Gaussian and Poisson noise (simulating the CMOS noise) and perlin 
noise (simulating auto-fluorescence of samples). Since the Poisson uses the pixel 
intensity as the mean of its distribution, there are 4 parameter left to be determined: 
the mean value and the standard deviation of the Gaussian, and the octave and the 
persistence of the perlin. We  use a grid search to traverse all the combinations of the 
parameters in pre-defined intervals until the synthetic LR images show very similar 
SNR and FFT spectrums to real LR measurements (Note Fig. S3). 

To further verify the accuracy of our degradation model, we recovered both 
synthetic and measured LR images using the same trained DSP-Net and compared 
their SR outputs. As shown in the Note Fig. S3, the SR images deduced from synthetic 
and measured LR images show very high similarity.   
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Note Fig. S2. Verification of the image degradation model. We visualized two 100 × 100 × 
100 μm regions in cerebellum and cortex of a mouse brain, to verify the accuracy of our 
degradation model. We first compare the 3.2× LR simulations degraded from the 12.6× HR 
measurement, with the real 3.2× LR measurements. Then the SR results recovered from both 
the 3.2× LR simulations and 3.2× LR measurements are also compared. a, b, The comparison 
of MIPs in xy and xz planes of the cerebellum region. c, d, The comparison of MIPs in xy and 
xz planes of the cortex region. The insets in the projection images accordingly show their 
Fourier spectrums, from which the SNR and achieved resolution of the images are also 
calculated. The visually and quantitatively high similarity between both the low-resolution 
pairs (3.2× measurement and 3.2× simulation results in blue box) and their corresponding SR 
reconstructions (SR by measurement, SR by simulation, and 12.6× HR measurement in red 
box), verifies the sufficient accuracy of our image degrading model. Scale bar, 20 μm. 
 
Note S3. Ablation study on dual-stage networks.  
There remains a doubt that whether the image-enhancing capability of the DSP-Net 
comes from the introduction of MR and the resolving loss during training, or simply 
the result of the increased parameters through stacking two sub-nets. To address this 
concern, we conducted an ablation study by comparing the performance of the DSP-
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Net and the rough combination (RC) of two sub-nets (without MR and the resolving 
loss when training), as shown in the following Note Fig. S4. We first generated HR, 
MR, and LR 3-D images of micro-tubulin. Then we trained the DSP-Net with HR-
MR-LR datasets and the RC with HR-LR datasets, respectively. When both networks 
were converged, we used them to recover 1) LR inputs with different noise level, and 
2) LR inputs with different signal density. The NRMSE and the SSIM for the DSP-Net 
outputs and for the RC outputs were calculated. Unsurprisingly, DSP-Net 
outperformed the RC on all testing conditions. DSP-Net showed not only perceptually 
clearer background, but also quantitatively better image quality (lower NRMSE, 
higher SSIM), which validated the significant advantage of our dual-stage design. 

 
Note Fig. S3. Comparison between the DSP-Net and the rough combination (RC) of two sub-
nets. a, The generated 3D micro-tubulin data. b, The training process of the DSP-Net and the 
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RC. There is not a resolving loss in RC to refine the 1st stage sub-net. c, MIPs of LR inputs of 
different noise level, the recovered results of DSP-Net and RC, and the corresponding HRs. d, 
MIPs of LR inputs of different signal density, the recovered results of DSP-Net and RC, and 
the corresponding HRs. e, The NRMSE and SSIM for the RC and for the DSP-Net outputs 
shown in c. f, The NRMSE and SSIM for the RC and for the DSP-Net outputs shown in d. 


