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1. METHODS

A. Experimental methods
We utilise a strain-compensated 2λ GaAs microcavity with embed-
ded InGaAs quantum wells and a quality factor Q ≈ 12 000 [1].
We continuously cool the microcavity sample in a cold-finger
cryostat (T ≈ 6 K) and operate at a negative cavity-detuning of
∆ ≈ −5 meV resulting in a lower polariton mode at λ ≈ 858 nm
for zero in-plane momentum |k| = 0. We use a circularly po-
larised non-resonant blue-detuned (λ ≈ 800 nm) pulsed laser
(pulse duration ≈ 150 fs, repetition rate 80 MHz). For each con-
densate node the laser is focused onto the microcavity sample to a
beam waist of approximately 2 µm via a 0.4 NA microscope ob-
jective. Polariton photoluminescence (PL) and the excitation laser
are measured by imaging the cavity emission or reflected light
of the microcavity sample onto a CCD sensor with integration
times in the range of 10-100 ms, which corresponds to averaging
measurements over approximately one million realisations of the
system. By using a longpass or shortpass filter in front of the
camera we can selectively choose to measure either the spatial
geometry of the polariton emission or the excitation laser.

Experimental details of the density stabilisation technique for
polariton condensate lattices are given in Supplementary Section 3.
Methods for the measurement of the mutual complex coherence
factor µij between any pair of condensate nodes are described in
Supplementary Sections 4 and 5.

B. Numerical Simulations
A stochastic dissipative Gross-Pitaevskii equation describes the
polariton condensate order parameter Ψ(r, t) coupled to a rate
equation describing the density of a background excitonic reser-
voir nx feeding particles into the condensate. The reservoir itself is
sustained by a decaying population of excited electron-hole pairs
nc(r, t) which we assume are generated instantaneously by the
sub-picosecond nonresonant Gaussian shaped pump P(r),
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nc = P(r)e−(W+Γc)t. (S1c)

Here, m is the effective mass of a polariton in the lower disper-
sion branch, α is the interaction strength of two polaritons in the
condensate, R is the rate of stimulated scattering of polaritons
into the condensate from the active reservoir, γ is the polariton
condensate decay rate, ΓR,c are the decay rates of the reservoir

excitons and electron-hole pairs respectively, W is the conver-
sion rate between the reservoir excitons and electron hole-pairs,
and V(r, t) = g(nx(r, t) + nc(r, t)) is the pump-induced poten-
tial with an effective reservoir-condensate interaction strength g.
Here we have introduced a Gaussian white noise term dW based
on a Monte Carlo technique in the truncated Wigner represen-
tation [2]. The correlators are written 〈dW(ri)dW(rj)〉 = 0 and
〈dW∗(ri)dW(rj)〉 = (Γ + Rnx)δ(ri − rj)dt/2∆A where ∆A is the
cell area of the spatial grid. In analogy to our experiments, the
integrated complex coherence factor µ̃ij between two condensate
nodes i and j [see Eq. (1) in the main text] is then calculated by av-
eraging over multiple realisations of condensate formation. Good
agreement between simulation and experimental data is obtained
by only adjusting the values of g and max[P(r)] between different
systems. The reason g is taken as an tuneable parameter is due to
the fact that V can possess a more complicated sublinear depen-
dence in Equation (S1a) as pointed out previously [3]. Parameters
were set to: Γ = 1/5.5 ps−1, ΓR = 2Γ, Γc = 0.0055Γ,W = 0.275Γ,
α = 0.01 ps−1 µm2, R = 0.05α, m = 0.32 meV ps2 µm−2, and
g = {0.0008, 0.0011, 0.0022, 0.0016}α for dyad, chain, square, and
triangle respectively.

2. COHERENCE IN POLARITON LATTICES

In our study of synchronisation in networks of coupled polariton
condensates we are interested in the correlations between pairs
of condensates which are described by their mutual coherence
function

Γij(t) =
〈

ψi(t)∗ψj(t)
〉

,

where the brackets denote ensemble averaging and ψi(t) is the
complex-valued amplitude of the ith condensate node. The expec-
tation value of the condensate’s particle number (occupation) is
given by the diagonal elements Γii(t), and the presence of non-zero
off-diagonal elements |Γij(t)| > 0 for i 6= j indicates long-range
order in the coupled condensate network. For nonstationary sys-
tems (such as for polariton condensates generated under pulsed
excitation) the coherence function Γij(t) depends on time t. We
note that pulsed excitation (≈ 150 fs pulse width) of ballistically
coupled condensate nodes leads to polariton photoluminescence
with typical emission signal full-width-at-half-maximum (FWHM)
of 18 ps (see Supplementary Section 8). A normalised form of the
mutual coherence function is given by the complex coherence
factor

µij(t) =
Γij(t)√

Γii(t)Γjj(t)
,



where for a fully coherent pair of condensates |µij| = 1. Consid-
ering measurements with time integration over many pulses we
define the integrated complex coherence factor

µ̃ij =

∫
Γij(t)dt√∫

Γii(t)dt
∫

Γjj(t)dt
,

as an averaged measure for the mutual coherence properties of
condensates in polariton networks. Throughout this manuscript
time-integrated variables are marked with the tilde diacritic. For
stationary ergodic systems (such as polariton condensates under
constant pumping) the complex coherence factor µij(t) does not
depend on time and time-integrated measurements of correlations
fully determine the coherence properties, i.e. µij(t) = µ̃ij. In case
of pulsed excitation of polariton condensates the modulus of the
time-integrated factor |µ̃ij| represents a lower bound for the maxi-
mum value of the complex coherence factor |µij(t)|. We note that
the argument of the integrated complex coherence factor repre-
sents the average condensate node phase difference θ̃ij = arg(µ̃ij)

and the integrated particle number
∫

Γii(t)dt of each condensate
node is proportional to its measurable average emission intensity
Ĩi.

3. FEEDBACK SCHEME

In this manuscript we present networks of ballistically coupled
polariton condensates for which the pumping geometry has been
adjusted using a reflective SLM (see Figure 1 in the main text)
such as to equalise the emission power of each condensate node at
condensation threshold. The algorithm used to calculate the holo-
grams which are applied to the SLM is a modified version of the
Gerchberg-Saxton (GS) algorithm [4] and takes into account feed-
back from the recorded PL in each iteration cycle. This iterative
algorithm is similar to the schemes presented in Refs. [5, 6] applied
to trapping of cold atoms. In our case the recorded PL of the con-
densates is not directly proportional to the pump power of each
node but depends on the coupling-topology of the network, i.e.
ballistic coupling between spatially separated condensate nodes
affects the gain of each condensate.

The algorithm is schematically illustrated in Figure S1(a) and
begins with the initialisation of a 2D complex field of amplitude
A(0)(r) and phase φ(0)(x, y) representing the amplitude of the
pump laser and the phase hologram in pixel coordinates of the
SLM, respectively. As an initial guess we assume a constant phase
pattern φ(0) = 0 and a Gaussian field amplitude, whose width
matches the pump laser width. In each iteration step n propaga-
tion of the complex field A(0)eiφ(n)(r) from the SLM plane (source)
to the focal plane (target) is computed by a fast Fourier trans-
form (FFT) yielding a complex-valued target field with amplitude
Â(n)(r) and phase φ̂(n)(r). Here, we use the hat symbol (ˆ) to
denote quantities in the target plane.

We add the output phase pattern φ(n) with a device dependent
correction term φc, which can also take into account optical aber-
rations in the experimental setup, and a blazed grating φg to offset
the modulated laser beam from its unmodulated reflected part.
The sum of these terms modulo the 2π bitlevel is applied to the
SLM and defines the pump laser geometry in our experiment. In
a next step we record the near-field photoluminescence of the
polariton system excited by the current pump laser geometry and

extract the emission power I(n)C of each condensate by integrating
the recorded signal within the FWHM (≈ 2 µm) of each node.

We update the target power I(n+1)
T for the next iteration step of

the algorithm for each condensate node utilising the non-linear
function

I(n+1)
T =

I(n)T

1 + ε
(

I(n)C /〈I(n)C 〉 − 1
) , (S2)

where ε is an adjustable feedback parameter and 〈I(n)C 〉 denotes
the mean of the measured condensate node emission distribution.
The non-linear mapping given by Equation (S2) lowers (raises)

the target pump power I(n+1)
T of nodes with measured emission

power I(n)C larger (lower) than the mean value 〈I(n)C 〉. The param-
eter ε controls the speed of the feedback loop but cannot be set
too large to avoid destabilisation of the algorithm. For ε = 0 the
algorithm depicted in Fig. S1(a) represents the conventional form
of the GS algorithm with no iterative adjustment of target spot

intensities, i.e. I(n+1)
T = I(n)T , and the initial target pattern I(0)T

fully determines the outcome of the iterative Fourier transform
algorithm.

Next, we calculate the two-dimensional field amplitude√
Î(n+1)
T (r) which consists of the superposition of Gaussian spots

representing the position and pump power of each condensate
node in the target plane. The amplitude of each Gaussian peak is

given by the square root of the updated spot power, i.e.
√

I(n+1)
T

and the width is related to the width of the Gaussian profile of the
pump laser by means of a Fourier transform. The updated field
amplitude feeds back into the GS cycle, where a complex-valued

field with amplitude
√

Î(n+1)
T (r) and phase φ̂(n)(r) is constructed.

Back-propagation of this complex field to the SLM plane is com-
puted by an inverse fast Fourier transform (IFFT) yielding a phase
pattern φ(n+1) which replaces the initial phase pattern for the
next iteration step, i.e. φ(n+1) → φ(n). The amplitude field at
the SLM plane is kept constant as the initial field A(0) for each
iteration step. We quit execution of the algorithm once the mea-

sured spot power distribution I(n)C shows a spread which is smaller
than a certain threshold level (usually 1% (RSD) reached within
. 100 iterations).

We find good results for stabilising the intensity distribution in
ballistically coupled polariton networks (RMS ≤ 1%) pumped at
condensation threshold P & Pthr by choosing ε to be in the range
10−2 − 10−1. Stabilisation at larger pump powers P� Pthr is im-
peded using the presented technique - which operates at a typical
rate of 60 Hz - because of stronger nonlinear effects resulting in
unstable regimes [7–9] and/or excitement of polaritons to higher
energy states [10], with subsequent nonstationary condensate dy-
namics on a picosecond timescale.

In Figure S1(b) we show the recorded laser (pump) profile for a
triangular lattice of 61 nodes (lattice constant a = 14.9 µm) using
a phase hologram computed with the conventional GS algorithm
(ε = 0; 100 iterations). Although the target image is a laser pattern
with homogeneous spot intensities, due to limited accuracy of
the algorithm as well as unavoidable optical aberrations due to
misalignment and device imperfections, the resultant experimen-
tally obtained pump spot intensity distribution deviates from the
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Fig. S1. (a) Schematic of the modified iterative Gerchberg-Saxton algorithm including feedback of the polariton photoluminescence
(PL) to stabilise the node density in networks of coupled polariton condensates. (b,c) Recorded laser pump profile and (d,e) real
space PL at condensation threshold without and with feedback, respectively.

homogeneous target. We measure a spread of≈ 17% (RSD) for the
distribution of pump spot powers. Using the same pump profile
to excite a triangular lattice of polariton condensates at conden-
sation threshold (P ≈ Pthr) we record the near-field PL as shown
in Figure S1(d) and find an increased spread of condensate node
densities of ≈ 37% (RSD). While sample disorder can have an
impact on the spatially dependent condensation threshold pump
power and emission intensity for each condensate node, the main
reason for the increased spread in the condensate emission power
distribution is due to the system’s nonlinear input-output-power
characteristics and the finite size of the system. Nodes that are
positioned at the edge of the condensate network are coupled
to fewer nearest-neighbours (NN) than nodes in the bulk. Since
coherent coupling between ballistically expanding polariton con-
densates results in a reduced condensation threshold [11], nodes
coupled to fewer NNs will typically have a higher threshold pump
power than nodes with a greater number of NNs (see Section 2B
in the main text). As a result, condensate nodes in the bulk of
the network generally have a larger occupation number (emis-
sion) than condensate nodes at the edges when pumped with
the same excitation pump power [12]. This is a consequence of
polariton waves radiating to the outside continuum and escaping
the network which can be regarded as an effective flux-induced
potential [13].
In Figs. S1(c,e) we show the recorded pump laser and correspond-
ing near-field polariton emission profiles at threshold P ≈ Pthr
after applying the intensity stabilisation feedback loop and termi-

nating it with spread in condensate node densities of≈ 1% (RSD).
Comparison of the density spread and the spatial coherence in
both polariton lattices without (ε = 0) and with (ε > 0) is shown
in Figure 1 in the main text.

4. FARFIELD INTERFERENCE OF POLARITON LATTICES

The time-averaged far-field interference pattern Ĩ(k) of a set of N
partially coherent, narrow-bandwidth and point-like light sources
positioned in one plane can be written in the basis of spatial fre-
quencies k as (see Supplementary Section 11)

Ĩ(k) ∝
N

∑
i,j=1

√
Ĩi Ĩjµ̃ije

ik·dij . (S3)

For each pair {i, j} of point sources dij denotes their in-plane
spatial separation vector and µ̃ij their respective integrated
complex coherence factor. For an incoherent system (µ̃ij = 0 for
i 6= j) the resulting homogeneous far-field radiation pattern is
the incoherent superposition of light sources with individual
intensities Ĩi. However, for non-vanishing off-diagonal coherence
elements (|µ̃ij| > 0) the radiation pattern Ĩ(k) described in
Equation (S3) becomes inhomogeneous and is formed by the sum
over discrete Fourier-components exp (ik · dij) weighted by the
integrated complex coherence factor µ̃ij.

Hence, in analogy to beam interference measurements of cou-
pled laser arrays [14], we can investigate the far-field emission
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Fig. S2. Farfield interference of coherently coupled condensates.
(a) Schematic of the experimental detection setup with micro-
cavity (MC), microscope objective lens (MO), lenses (L1,L2),
programmable aperture (PA) and charge-coupled device (CCD).
(b) Real space PL, (c) real space masking aperture and (d) cor-
responding far-field interference pattern of 61 condensates ar-
ranged in a triangular geometry.

of the coupled polariton condensate network to gain information
about the system’s spatial coherence properties. To remove resid-
ual PL coming from polaritons outside the condensation (gain-
)centres we spatially filter the emission of each condensation cen-
ter and measure the interference of the masked condensate emis-
sion in the far field. As schematically illustrated in Figure S2(a) we
project the near-field PL onto a programmable aperture which al-
lows to selectively mask the real space field Ψ(r, t)→ A(r)Ψ(r, t)
with amplitude function A(r) ∈ (0, 1). Subsequently we image the
diffraction pattern (far field) onto a charge-coupled device (CCD)
sensor. The programmable aperture consists of a digitally control-
lable reflective liquid-crystal SLM as described in reference [15]
and allows to modulate light polarized along the SLM’s extraor-
dinary axis. With the use of an additional wave plate and linear
polarizer the apparatus transmits only circular polarised light
which is chosen to be the same as the polarisation of the pump
laser beam. We note that the condensate structures presented
in this work are highly polarized with a large degree of circular
polarisation conserved from the pump laser. By projecting the
near-field PL of the polariton condensate lattice (Figure S2(b)) onto
an aperture that transmits only the central FWHM ≈ 2 µm of each
condensation centre (Figure S2(c)) we record the corresponding
far-field emission (Figure S2(d)) that consists of the interference
of all condensate nodes. According to the Fraunhofer diffraction
formula the measured far-field intensity distribution for a fully co-
herent wave is proportional to the squared modulus of the Fourier
transform of the optical field at the aperture location, which is
obtained from Equation (S3) for |µ̃ij| = 1 for all pairs {i, j}. In-
deed, the appearance of the reciprocal triangular lattice, shown in
Figure S2(d), indicates long-range coherence across the triangular
lattice of polariton condensates.

5. MEASUREMENT OF COHERENCE IN POLARITON LAT-
TICES

Far field measurements shown in Figure S2 give information about
the global coherence properties of the coupled condensate network
and are analogous to time-of-flight experiments used in cold atom
systems [16]. However, precise information about the local com-
plex coherence factor µij can not be obtained. The programmable
aperture in our experiment (see Figure S2) overcomes this prob-
lem and allows for selective interference between any pair {i, j}
of condensates, such that the complex coherence factor µij can be
spatially reconstructed [15, 17]. In particular, the far-field inter-
ference of the emission of two spatially filtered condensate nodes
ψi(r, t) and ψj(r, t) centred around their respective positions ri
and rj yields the measurable intensity pattern Ĩi+j(k) in k-space
as, [18]

Ĩi+j(k) = Ĩi(k) + Ĩj(k)

+ 2
√

Ĩi(k) Ĩj(k)
∣∣∣µ̃ij

∣∣∣ cos
(

k · dij + θ̃ij

)
,

(S4)

where we explicitly take into account non-homogeneous intensity
distributions Ĩi,j(k) due to the finite aperture sizes. In Figure S3 we
project the triangular lattice of 61 condensates (a) onto three differ-
ent apertures filtering the emission of the central-most condensate
(b), of one of its nearest-neighbours (c) and of both condensates
simultaneously (d). The corresponding measured far-field diffrac-
tion patterns Ĩ1(k), Ĩ2(k) and Ĩ1+2(k) are shown in Figures S3(e-g)
respectively. We extract 1D intensity profiles Ĩ(k‖) along the di-
rection vector k‖, which is defined as co-parallel to d12 such that
k‖ · d12 = k‖|d12|. Equation (S4) can be rewritten as,

Ĩ1+2(k‖) = Ĩ1(k‖) + Ĩ2(k‖)

+ 2
√

Ĩ1(k‖) Ĩ2(k‖) |µ̃12| cos
(

k‖|d12|+ θ̃12

)
,

(S5)

and is fitted to the experimentally extracted intensity profiles
Ĩ1(k‖), Ĩ2(k‖) and Ĩ1,2(k‖) to yield |µ̃12| and θ̃12 as shown in Fig-
ure S3(h). By extracting |µ̃12| for varying pump power we identify
the threshold-like behaviour of coherence shown in Figure S3(i)
with vanishing coherence between the two nodes below threshold
and a sharp increase at threshold. The observed decrease of coher-
ence for larger pump powers P > 1.2Pthr is attributed to effects
involving dephasing due to increased particle interactions, reser-
voir induced noise, enhanced proliferation of topological defects,
as well as to the emergence of multi-mode emission [19] reducing
the fringe visibility in time-integrated measurements.

Repeating the interference measurement for the central conden-
sate node 1 and each other condensate node j we fully characterise
the spatial coherence properties of the central condensate node
within the triangular lattice (see Figures S3(j,k) or Figures 1(e,f) in
the main text).

6. FINITE VS INFINITE LATTICE

In experiment finite-size effects cannot be avoided whereas in
theory they can by applying periodic boundary conditions. In Fig-
ure S4 we investigate the difference of finite and periodic systems
through simulation of Equation (S1). In agreement with experi-
ment, and previous theoretical observations [12], the pseudo-spin
of µ̃ij tilts as one approaches the edges of the finite (damped
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Fig. S3. Measurement of spatial coherence in lattices of coupled polariton condensates. By projecting the (a) real space PL of a
lattice of coupled condensates onto a programmable aperture that spatially filters the emission to transmit only (b) condensate node
1, (c) condensate node 2 or (d) both condensate nodes 1 + 2 we record the respective far-field emission (e-g). The extracted intensity
profiles Ĩ1(k‖), Ĩ2(k‖) and Ĩ1,2(k‖) perpendicular to the orientation of the interference fringes in (g) are shown in (h) together with a
fit according to Equation (S5). Pump power-dependence of the modulus of the integrated coherence factor |µ̃12| is displayed in (i).
Extracted values of the integrated complex coherence factor µ̃1i between the central condensate node 1 and each other condensate
node i are illustrated in (j) and (k) for the cases of no condensate node density stabilisation and with node density stabilisation. All
values are extracted at a total pump power P = 1.2Pthr. False colour scale shown for (a) applies to (e-g) in linear scale and to (a) in
logarithmic scale saturated below 0.01 of the maximum count rate.

boundary condition) condensate lattice (see Figure S4(c)). This
effect is expected due to the non-zero flux of particles through the
boundaries of the lattice resulting in a phase gradient differing
from standing wave solutions of θ̃ij = 0, π. When the system has
periodic boundary conditions (see Figure S4(d)) the pseudo-spin
tilt vanishes and the lattice is characterised by a homogeneous
standing wave solution (zero net-flux along x and y directions).
The simulation in both cases uses a lattice constant of a = 12 µm
and is performed on a 16a× 16a grid but we only plot the inner-
most 11a× 11a of the grid. Therefore, removing finite size effects
results in a homogeneous power distribution among all conden-
sate nodes and thus the phases-differences stay homogeneously 0
or π.

We point out that by simulating a periodic system the coherence
has dropped by a small amount. This can be understood from the
fact that each pulse proliferates vortex solitons [20] which, in a
finite system, can decay out through the boundary of the system
(i.e., damped boundary conditions destroy such defects). In the
absence of such a decay channel, these defect states can survive
much longer in a periodic system leading to a drop in coherence.

7. EXCITATION PUMP POWER DEPENDENCE

In this section we describe the pump power dependence of the
stabilised triangular lattice of 61 ballistically coupled polariton
condensates with lattice constant a = 14.9 µm shown in Figures 1
and 2 in the main text. For the case of pulsed excitation the pump
power P is a time-averaged value and a change of P is equivalent

to changing the peak amplitude of the sub-picosecond laser pulse.
The recorded emission patterns for pump power P = 1.2Pthr in
near-field, far-field and energy resolved far-farfield along the sym-
metry axis kx = 0 are illustrated in Figures S5(a,c,e). The pump
power geometry was adjusted using the described iterative feed-
back algorithm to stabilise the emission power of all condensates
at threshold such that the spread of measured condensate emis-
sion powers shows a minimum of 1% (RSD) for P = Pthr. In
Figure S5(b) we show the spread of condensate emission powers
for varying total excitation pump power while keeping the relative
pump power between different nodes constant. An increase of the
spread above condensation threshold to about 20% at P = 1.2Pthr
originates from the different number of coupled neighbouring
sites between condensates in the centre and at the edge of the
lattice structure leading to different additional gain from coherent
coupling between condensate nodes.

In Figure S5(d) we illustrate the pump power dependence of
the total integrated PL demonstrating a threshold level with non-
linear increase of PL intensity which we define as condensation
threshold Pthr. An increase in pump power from condensation
threshold Pthr to the operational point P = 1.2Pthr leads to a 9-fold
increase of total PL power.

The spectrally resolved PL in reciprocal space along the symme-
try axis kx = 0 in Figure S5(e) demonstrates PL emission at one
dominant mode with FWHM ≈ 250 µeV. In agreement with the
threshold-like behaviour of the integrated PL we can see a sharp
narrowing of polariton linewidth at condensation threshold which
is shown in Figure S5(f) .
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Fig. S4. Numerical simulation of a square lattice of ballistically
expanding polariton condensates with damped (a,c) and pe-
riodic boundary conditions (b,d). (a,b) Time-integrated and
normalised real space densities for both types of lattices with
equal pump power for each condensate node. (c,d) Extracted ab-
solute values and phases of the complex degree of coherence µ1j
between the most central condensate node (index 1, located at
x, y = 0) and every other condensate node (index j). The lattice
constant is a = 12 µm and size of simulation grid is 16a× 16a
with displayed results are zoomed in on an area of 11a× 11a.

8. TIME-RESOLVED SYNCHRONISATION OF TWO CON-
DENSATES

The time-resolved formation of coherence in polariton conden-
sates under non-resonant pulsed excitation has been investigated
for single- [21–23] and two-condensate systems [19, 24]. In the
latter case, however, a full description of the synchronisation pro-
cess between two condensates in terms of their complex coher-
ence factor has not been reported. Here, we explicitly measure
the (time-resolved) complex coherence factor µ12(t) of two bal-
listically coupled condensation centres. Pulsed excitation of two
condensates with separation distance d12 = 8 µm leads to the
time-averaged near-field photoluminescence displayed in Fig-
ure S6(a). The pump power P ≈ 1.2Pthr is the same as for the
distance-dependence shown in Figure 3 in the main text. One
bright interference peak located in-between the two condensa-
tion centres at x, y = 0 indicates synchronisation with vanishing
phase-difference, i.e. θ̃12 = 0. To reveal the coherence properties
between the two condensates we record their far-field interference
by spatially filtering the emission of both condensation centres
(red-dashed circles) as shown in Figure S6(b). The modulus of the
integrated coherence factor from this time-averaged interference
pattern is extracted as |µ̃12| = 0.94. By projecting the far-field
pattern onto the entrance slit of a streak camera (time resolution

Fig. S5. Pump-power dependence of a triangular lattice of po-
lariton condensates. (a) Recorded near-field photoluminescence
of 61 polariton condensates pumped at 1.2 times condensation
threshold. (b) Pump-power dependence of the relative standard
deviation (RSD) of the distribution of integrated condensate
emission. The system was stabilised to obtain minimum RSD
(1%) at condensation threshold Pthr. (c) Recorded far-field pho-
toluminescence for P = 1.2Pthr. (d) Pump-power dependence
of the integrated emission in reciprocal space. (e) Spectrally-
resolved momentum space emission along the symmetry axis
kx = 0 for P = 1.2Pthr. Lower polariton branch below threshold
shown as red-dashed dispersion curve. (f) Pump-power depen-
dence of the spectral full width at half maximum.

∆t ≈ 2 ps) we resolve the interference and emission of each in-
dividual condensate node in time as shown in Figures S6(c-e).
We extract the time-dynamics of the mutual complex degree of
coherence µ12(t) from the measured interference and reference
signals and illustrate its phase θ12(t) and modulus |µ12(t)| in Fig-
ures S6(f) and (g), respectively. The time-resolved occupation
Γ11(t) + Γ22(t) with Γii(t) = 〈|ψi(t)|2〉 of both condensates is
shown in Figure S6(h) and reveals pulsed polariton emission with
temporal width ≈ 18 ps (FWHM) and peak signal at 50 ps after
excitation with the pump laser. We find complete synchronisation
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with θ12 = 0 and a maximum degree of coherence |µ12| = 1 ap-
pearing earlier than the peak PL signal at t = 41 ps still during
the condensate growth time. The subsequent temporal decay of
mutual coherence is slower than the decay of total condensate
population with fitted 1/e decay times of 80 ps and 13 ps, respec-
tively. We note that different growth and decay dynamics between
population and coherence in single-condensate systems have been
reported in Ref. [21] and Ref. [22].

9. COMPARISON TO CONTINUOUS WAVE EXCITATION

We compare the results of mutual coherence between two bal-
listically expanding polariton condensates pumped under sub-
picosecond excitation shown in Figure 3 in the main text to the
case of pumping using continuous wave (cw) monomode laser
excitation. To prevent heating of the microcavity sample under
cw excitation, the excitation laser is modulated by an acousto-
optic modulator to generate square wave packets of 5 µs du-
ration at a frequency of 10 kHz. In Figures S7(a) and (b) we
illustrate the recorded near-field and far-field photoluminescence
of two condensate with separation distance d = 12 µm. The
system is pumped at P = 1.6Pthr with a threshold pump power
Pthr ≈ 10 mW per condensate node as shown in Figure S7(c).
We note that the near-field and far-field excitation pattern in Fig-
ures S7(a) and (b) are different to the emission patterns shown
in Figures 3(a) and (b) in the main text under pulsed excitation
despite a small difference in pump spot separation distance of
less than 1 µm. In both cases the emission patterns indicate syn-
chronisation in a state with π phase-difference between the two
condensate nodes. However, the outflow wavevector (or alterna-
tively in-plane momentum) of polaritons under pulsed excitation
is larger than under cw excitation leading to a smaller interference
fringe periodicity in both real- and momentum-space.

The extracted decay of the complex coherence factor µ12 with
increasing condensate separation distance under cw excitation
is illustrated in Figure S7(d). In the same plot we show the de-
pendency of the integrated complex coherence factor µ̃12 on the
separation distance d12 of two condensates under pulsed excita-
tion condition (as presented in Figure 3 in the main text). While
both systems demonstrate similar coherence properties for con-
densate separation distances d12 ≤ 20 µm, the stationary sys-
tem’s coherence |µ12| is enhanced for distances larger than 20 µm
as compared to the nonstationary system under sub-picosecond
pulsed excitation. A Gaussian fit (see Equation 2 in the main text)
of the decay of coherence |µ12(d12)| with increasing condensate
spacing under cw excitation yields an effective coherence length
LC = 40 µm. We argue that the build-up of coherence |µ12(t)|
between the two ballistically coupled condensates under pulsed
excitation (as described in Supplementary Section 8) is fast enough
for small distances d12 ≤ 20 µm as to synchronise and reach the
same coherence |µ12| as in steady-state operation. For larger dis-
tances, however, the increased time-of-flight of particles travelling
in-between the two condensate nodes [25] becomes noticeable and
reduces the coherence factor |µ̃12| of the nonstationary system
with finite life-time.

10. BOGOLIUBOV ANALYSIS

Let us consider the continuous-wave excitation regime where
nc(r) = P(r) is taken time-independent. We will also consider the

Fig. S6. Synchronisation of two ballistically coupled polariton
condensates. (a) Near-field photoluminescence of two conden-
sates with separation distance d12 = 8 µm. (b) Recorded far-field
photoluminescence when filtering the emission of the conden-
sate centres marked with red dashed circles in (a). (c-e) Time-
resolved and normalised far-field photoluminescence for both
condensates interfering (1 + 2) and individually (1, 2) recorded
by projecting the photoluminescence onto the entrance slit of a
streak camera (red-dashed rectangle in (b)). Time-dependencies
of extracted phase difference θ12, the modulus of the complex
degree of coherence |µ12| and the total emission signal Γ11 + Γ22
of both condensate nodes are shown in (f-h). The emission sig-
nal Γ11 + Γ22 is extracted by spatial integration of the signals
in (d) and (e). The origin for the time axis in (f-h) is defined by
the laser arrival time. The full width at half maximum of the
emission signal (≈ 18 ps) is highlighted in light green.

ideal case of no stochasticity by setting dW = 0. Assuming that
the reservoir nx follows the dynamics of the condensate we can
perform an adiabatic elimination of Equation (S1b) and keeping
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Fig. S7. Ballistic coupling of two polariton condensates pumped
under continuous wave (cw) excitation. Recorded (a) near-field
and (b) far-field photoluminescence for two condensates sepa-
rated by d12 = 12 µm . (c) Extracted mutual coherence factor
|µ12| between the two condensates as a function of excitation
pump power Pi per condensate. Vertical arrow marks the fixed
pump power (P ≈ 1.6Pthr) for data shown in (a,b) and for the
condensate separation distance dependence shown in (d). The
data points of a dyad under pulsed excitation (grey triangles)
are illustrated for comparison to the system under cw excitation
(orange circles). Curves in (d) represent Gaussian fits. Scale bars
in (a) and (b) correspond to 10 µm and 1 µm−1, respectively.

terms to the first order in R in Equation (S1a) we have,

i
∂Ψ
∂t

=

[
− h̄∇2

2m
+ gP(r) + α|Ψ|2 + iP

2

(
1− |Ψ|

2

ns

)
− iγ

2

]
Ψ,

(S6)
where ns = ΓR/R. Performing the standard Bogoliubov treatment
where the condensate wavefunction Ψ is expanded around a fixed
point solution Ψ0 of Equation (S6) with energy h̄ν we write,

Ψ = Ψ0(r)e−iνt

[
1 + ∑

q

(
un,qeiq·r+λnt + vn,qe−iq·r+λ∗nt

)]
(S7)

We wish to scrutinise the dispersion of elementary excitations
(Lyapunov exponents) with complex energies λn. We point out
that the connection between the Lyapunov exponents and Bogoli-
ubov elementary excitations ωn [26] is simply λn = −iωn seen
from Eq. Eq. (S7). Substitution of Equation (S7) into Equation (S6)
and keeping only terms linear in un,q and vn,q we obtain a lin-
earised set of equations of motion for the disturbances. We assume
that the potential V and condensate Ψ0 are infinite and periodic
such that P(r) = P(r + a) and |Ψ0(r)|2 = |Ψ0(r + a)|2, where
a = n1a1 + n2a2 is the translational symmetry vector defined in
the bases of primitive lattice vectors a1,2 for some integers n1,2.
We can then apply Bloch’s theorem where we write the distur-
bances wavefunction in the factorised form of crystal momentum

q = (qx, qy) and Bloch states in the nth band un,q(r) = un,q(r + a)
and vn,q(r) = vn,q(r + a).

Bn,q(r) =

un,q(r)

vn,q(r)

 . (S8)

By Fourier transforming periodic terms into the basis of reciprocal
lattice vectors we can easily solve the energies λn belonging to
un,q and vn,q,

L(q, Ψ0)Bn,q = λn(q)Bn,q, (S9)

where L is our Bogoliubov (Lyapunov) matrix in the crystal mo-
mentum representation,

L(q, Ψ0) =
h̄

2m

[(
qx − i

∂

∂x

)2
+

(
qy − i

∂

∂y

)2
]

σ̂3

+
[

gP(r)− ν + 2α|Ψ0|2
]

σ̂3 +
i
2

(
P− γ− 2P

|Ψ|2
ns

)
σ̂0

+ α

 0 Ψ2
0

−(Ψ∗0)2 0

− iP
2ns

 0 Ψ2
0

(Ψ∗0)
2 0

 .

(S10)
The solution Ψ0 satisfying Equation (S6) can be obtained numeri-
cally using periodic boundary conditions. Plugging the obtained
solution Ψ0, which corresponds to observed condensate patterns
in experiment, into the eigenvalue problem for Bn,q we can finally
diagonalise our system.

11. FAR-FIELD DIFFRACTION FOR NARROW-
BANDWIDTH PARTIALLY COHERENT LIGHT

Let us assume the narrow bandwith optical field Ψ(r, t) =
ψ(r, t) exp (−i2πct/λ̄) with mean wavelength λ̄ is being trun-
cated by a thin aperture with transmittance function P(r) in the
plane A such that the field directly after the aperture is given by
the product P(r)Ψ(r, t). The signal’s bandwidth ∆ν is assumed to
be much smaller than the central frequency ν̄ = c/λ̄ such that the
complex amplitude ψ(r, t) is a slowly varying envelope in time.
The average intensity distribution Ĩ(q) of the resulting far-field
diffraction pattern described in coordinate basis q - realised at
the back focal plane of a thin Fourier-transforming lens with focal
length f - in analogy to Schell’s theorem [27] can be approximated
as

Ĩ(q) =
∫∫
A

∫∫
A

P∗(r1)P(r2)
√

Ĩ(r1) Ĩ(r2)µ̃(r1, r2)
ei 2π

λ̄ f q·d12

(λ̄ f )2 dr1dr2,

(S11)
with distance vector d12 = r1 − r2, integrated complex coher-
ence factor µ̃(r1, r2) and average intensity Ĩ(r1,2) of the optical
field ψ(r1,2, t) at locations r1,2 in the input plane A. We further
approximate a distribution of point-like holes in the aperture, i.e.

P(r) = A0 ∑
i

δ (r− ri) , (S12)

where A0 corresponds to the finite physical size of each hole, and
we transform into the basis of spatial frequencies k(q) = 2πq/λ̄ f
yielding

Ĩ(k) =
A2

0
(λ f )2 ∑

i,j

√
Ĩ(ri) Ĩ(rj)µ̃(ri, rj)e

ik·dij . (S13)
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Under the assumption of a fully coherent field with constant coher-
ence factor µ̃(ri, rj) = 1 the resultant far-field diffraction pattern
(Equation (S13)) reduces to the well-known Fraunhofer diffraction
formula,

Ĩ(k) =

∣∣∣∣∣A0
λ f ∑

i

√
Ĩ(ri)e

ik·ri

∣∣∣∣∣
2

. (S14)

It is apparent from Equation (S14) that in case of a periodic ar-
rangement (lattice) of aperture holes at locations ri the resultant
intensity distribution Ĩ(k) is formed by the squared modulus
of the discrete Fourier-transform of the optical field sampled at
locations ri.
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