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KATARZYNA RECHCIŃSKA,1 PRZEMYSŁAW OLIWA,1

KRZYSTOF TYSZKA,1 WITOLD BARDYSZEWSKI,4 ANDRZEJ OPALA,5

MICHAŁ MATUSZEWSKI,5 PRZEMYSŁAW MORAWIAK,6

RAFAŁ MAZUR,6 WIKTOR PIECEK,6 PRZEMYSŁAW KULA,7

PAVLOS G. LAGOUDAKIS,3,2 BARBARA PIĘTKA,1
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1. Angle-resolved spectra corresponding to Berreman matrix simulations
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Fig. S1. Simulated angle-resolved transmittance corresponding to data in Fig. 3 in the
main text. (a) Transmittance in (#, #) and (c) (# + 2, #) regime. (1 parameter of
transmitted light in (b) (#, #) and (d) (# + 2, #). Dashed vertical line marks energy
of transmitted light resulting in spatial polarisation textures shown in Fig. 3 in the main
tex.

Figure S1 presents simulated angle-resolved spectra corresponding to the data shown in Fig. 3
in the main text. Fig. S1(a) shows intensity of unpolarised light transmitted through the cavity in
(#, #) regime [\ = 90◦, Fig. 2(a)–(d)]. We remind that \ is the angle of the liquid crystal (LC)
molecular director. Fig. S1(b) presents corresponding (1 Stokes parameter of transmitted light.
Similarly Fig. S1(c),(d) depicts transmission intensity and (1 Stokes parameter for (# + 2, #)
regime, which for this structure can be achieved by changing only molecules rotation angle to
\ = 24.77◦.



 
 S1

−1 −0.5 0 0.5 1

y 
(µ

m
)

−10

−5

0

5

10

 S2

x (µm)
−10 −5 0 5 10

 S3
 S1 S2

x (µm)
−10 −5 0 5 10

x (µm)
−10 −5 0 5 10

x (µm)
−10 −5 0 5 10

x (µm)
−10 −5 0 5 10

x (µm)
−10 −5 0 5 10

−1 −0.5 0 0.5 1−1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1

 

 

 
  

 
 

 

 S3

−1 −0.5 0 0.5 1

 
 

y 
(µ

m
)

−10

−5

0

5

10

y 
(µ

m
)

−10

−5

0

5

10 

    

 

y 
(µ

m
)

−10

−5

0

5

10 

0

5

10

(a) (b) (c) (j) (k) (l)

(g) (h) (i)  

  

(p) (q) (r)

(d) (e) (f) (m) (n) (o)

Fig. S2. Second order meron and antimeron textures in LC microcavities. (a)–(c),
(3, (1, and (2 Stokes parameters showing the analytical spin texture of a second
order meron given by equation (3) in the main text. Black arrows correspond to
S‖ = ((1, (2). (d)–(f) Experimental spatial polarisation texture of f+ polarised light
transmitted through a LC microcavity in (#, #) regime. (g)–(i), Spatial polarisation
texture calculated with the Berreman method. (j)–(l), (3, (1, and (2 Stokes parameters
showing the analytical spin texture of a second order antimeron given by equation (3) in
the main text. (m)–(o), Experimental spatial polarisation texture of f+ polarised light
transmitted through a LC microcavity in (# +2, #) regime. (p)–(r), Spatial polarisation
texture calculated with the Berreman method. Panels (a)–(f), (j)–(o) are a part of Fig. 4
from the main text.

2. Berreman matrix simulations of experimentally observed meron polarisation
textures

Figure S2 presents Fig. 4 from the main text extended by Berreman matrix simulations of
experimentally observed spatial polarisation textures in (#, #) regime [Fig. S2(g)–(i)] and in
(# + 2, #) regime [Fig. S2(p)–(r)]. Exact parameters of the simulated structures were optimised
to match with experimental angle-resolved spectra for a given sample, shown in Fig. S3 and
Fig. S4.

Figure S3(a),(b) presents experimental transmission intensity and (1 parameter from cavity in
(#, #) regime corresponding to data shown in Fig. S2(d)–(f). Fig. S3(c),(d) shows simulated
spectra for a cavity that consists of two DBRs made of 5 pairs of layers with refractive indices
=low = 1.45 and =hi = 2.2 centred at _0 = 700 nm. Simulated cavity is 1855 nm thick and filled
with birefringent liquid crystal with =o = 1.504 and =e = 1.801 with director oriented along I
direction.

Figure S4(a),(b) presents experimental transmission intensity and (1 parameter from cavity in
(# + 2, #) regime corresponding to data shown in Fig. S2(m)–(o). Fig. S4(c),(d) shows simulated
spectra for a cavity that consists of two DBRs made of 4 pairs of layers with refractive indices
=low and =hi centred at _0 = 580 nm. 1902 nm thick cavity is filled with birefringent liquid crystal
with =o = 1.539 and =e = 1.949 with molecules rotation angle \ = 26.27 deg.
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Fig. S3. Transmission from the (#, #) LC microcavity. (a) Experimental angle-
resolved transmittance of white light through (#, #) LC microcavity. (b) (1 stokes
parameter of transmitted light. (c) Simulated angle-resolved transmittance of the
cavity and (d) simulated (1 Stokes parameter. Dotted horizontal lines mark energy
of transmitted light resulting in spatial polarisation textures shown in Fig. S2(d)–(f)
corresponding to experiment and Fig. S2(g)–(i) to simulation.
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Fig. S4. Transmission from the (# + 2, #) LC microcavity. (a) Experimental angle-
resolved transmittance of white light through (# + 2, #) LC microcavity. (b) (1 stokes
parameter of transmitted light. (c) Simulated angle-resolved transmission coefficient of
the cavity and (d) simulated (1 Stokes parameter. Dotted horizontal lines mark energy
of transmitted light resulting in spatial polarisation textures shown in Fig. S2(m)–(o)
corresponding to experiment and Fig. S2(p)–(r) to simulation.

3. Coupling of cavity modes in (# + 2, #) regime

Figure S5 presents experimental angle-resolved transmittance spectra for a cavity tuned around
(# + 2, #) crossing (varying external voltage). Fig. S5(a)–(e) presents dispersion relation for
wave vectors along G direction, Fig. S5(f)–(j) along H direction and Fig. S5(k)–(o) along diagonal
direction. For wave vectors along the G and along H axes the --polarised mode gradually crosses
the . -polarised mode. However for the antidiagonal wave vector direction (:G = −:H) an
anticrossing behaviour between the modes can be observed, which is an evidence on coupling
between them.

This anticrossing can be better illustrated in Fig. S6, showing transmission intensity at different
voltages at a fixed 4.5 μm−1 wave vector value oriented in different directions: Fig. S6(a) for
:G , Fig. S6(b) for :H , Fig. S6(c) for :3 and Fig. S6(d) for :0. With wave vector along G and H
directions are polarised accordingly to the main axes of LC molecules as shown in Fig. S6(e),(f)
presenting intensity difference between --polarised transmission intensity (�- ) and . -polarised
intensity (�. ). At those directions modes crosses each other. Detection along the diagonal
and antidiagonal directions [Fig. S6(c),(d)] reveals coupling between the modes observable as
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Fig. S5. Angle-resolved transmission intensity at different voltages applied to the LC
microcavity around the (# + 2, #) regime showing the gradual change in the system’s
dispersion properties. (a)–(e) Transmission angle along G axis: (a) 1.320V, (b) 1.410V,
(c) 1.458V (d) 1.524V and (e) 1.626V. The changing - polarised mode crosses over
the unaffected . polarised mode. (f)–(j) Transmission angle along H axis: (f) 1.320V,
(g) 1.410V, (h) 1.458V (i) 1.524V and (j) 1.626V. As previously, the changing -
polarised mode crosses the unaffected . polarised mode. (k)–(o) Transmission angle
along antidiagonal (0) direction (:G = −:H): (k) 1.320V, (l) 1.410V, (m) 1.458V
(n) 1.524V and (o) 1.626V. Increasing voltage now reveals the coupling between the
modes observed as anticrossing behaviour.

anticrossing behaviour. For these wave vector orientations there is significant difference between
intensity detected in diagonal (�d) and antidiagonal (�a) linear polarisations as presented in
[Fig. S6(g),(h)]. Experimentally observed results are in a good agreement with Berreman matrix
simulations shown in Fig. S6(i)–(l).

4. Meron orientation and size

Size and orientation of the meron polarisation texture depends on the exact properties of a
given LC microcavity. Fig. S7 presents impact of the birefringence of LC layer. Berreman
matrix simulations were performed for a cavity made of 5 distributed Bragg reflector (DBR)
pairs of layers with refractive indices =low = 1.45 and =high = 2.2 and thickness _0/4=8 , where
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Fig. S6. Voltage tuning of LC microcavity in (# + 2, #) regime at 4.5 μm−1 wave
vector at different directions. Total transmission intensity at (a) :G = 4.5 μm−1,
(b) :H = 4.5 μm−1, (c) :3 = 4.5 μm−1 and (d) :0 = 4.5 μm−1. (e)–(f) Difference
between transmission intensities of -- and . -polarised light corresponding to [(a),(b)].
(g)–(h) Difference between transmission intensities of diagonally and antidiagonally
polarised light corresponding to [(c),(d)]. (i)–(l) Corresponding simulated difference
between transmittance in relevant polarisations with rotation of LC molecules director.

_0 = 750 nm (1.6531 eV). Central LC layer was simulated with =o = 1.504 and thickness 5_0/=o,
where =e was changed to obtain different birefringence Δ= = =e − =o. Fig. S7a–c presents
simulated spatial polarisation textures of transmitted light obtained for f+ polarised incident
beam with wavelength 748.9 nm (1.6556 eV) at different birefringences: Fig. S7(a) Δ= = −0.4,
Fig. S7b Δ= = −0.02 and Fig. S7(c) Δ= = 0.4. Corresponding angle-resolved reflectance spectra
are presented in Fig. S7(d)–(f). With varying birefringence both spatial size and orientation of the
second order meron polarisation texture changes, as summarised in Fig. S7(g). With increasing
birefringence meron texture rotates clockwise with the steepest change when Δ= is close to zero.
Low optical anisotropy of the LC layer results also in increasing size of the meron texture. Due
to low light intensity far away from the excitation spot simulation range is limited to ≈ ±100 μm.
Size and orientation of the meron textures depends also on the energy position of the mode

within the photonic stopband region of the DBRs, which is summarised in Fig. S8. Calculations
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Fig. S7. Simulated dependence of the second order meron orientation and size
on LC birefringence. Polarisation texture of transmitted light for (a)Δ= = −0.4,
(b)Δ= = −0.02 and (c)Δ= = 0.4. Note the flipped in-plane orientation of the arrows.
Angle-resolved reflectance spectra for (d)Δ= = −0.4, (e)Δ= = −0.02 and (f)Δ= = 0.4
where dashed line marks photon energy investigated in transmission. (g) Dependence
of the size (radius) and orientation angle of a second order meron (diamonds and circles
respectively) on LC birefringence.

were performed for analogous cavity as in Fig. S7, with Δ= = 0. Energy of the mode is changed in
simulations by adjusting thickness of the LC layer filling the cavity by −300 nm to 350 nm from
initial value 2437 nm resulting in a cavity resonance at central wavelength _0. Such thickness
range allows to tune cavity mode energy by ≈ 0.3 eV, as shown in the angle-resolved reflectance
spectra in Fig. S8(d) for −165meV, Fig. S8(e) for 0meV, and Fig. S8(f) for 173meV energy shifts
from _0. The investigated mode in this multimode cavity is marked by a dashed line showing
the transmitted light energy 10meV above the mode resonance at normal incidence. Simulated
second order antimeron textures are calculated for Fig. S8(a) −165meV, Fig. S8(b) −52meV and
Fig. S8(c) for 173meV energy shift from the central wavelength. Overall dependence of meron
texture orientation and size on the cavity mode energy shift [Fig. S8(g)] follows qualitatively the
same dependence as when varying the birefringence shown previously in Fig. S7(g).

5. Effective Hamiltonians for coupled X and Y polarised modes

The eigenmodes inside the cavity are represented by plane waves propagating in the plane of the
cavity perpendicular to the I axis:

©­«
�G (G, H, I)

�H (G, H, I)
ª®¬ = ®� ®: (I)48 ( ®: ·®A−lC) (S1)

The vector ®� ®: can by found from the following effective wave equation in the birefringent medium
characterised by a dielectric tensor n8 9 :

− m2
I
®� + �̂mI ®� + �̂1 ®� = :2

0 �̂0 ®� (S2)
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Fig. S8. Simulated dependence of second order meron orientation and size on energy
position of the cavity mode within photonic stopband region. Polarisation texture of
transmitted light for (a)−165meV, (b)−52meV and (c) 173meV energy shift of the
cavity mode from stopband centre. Angle-resolved reflectance spectra for (d)−165meV,
(e) 0meV and (f) 173meV energy shift of the cavity mode from stopband centre, where
dashed line marks photon energy investigated in transmission. (g) Dependence of the
size (radius) and orientation angle of a second order meron (diamonds and circles
respectively) on cavity mode energy shift.

where ®: = k = (:G , :H) and :0 = l/2. Assuming that nGH = nHG = nIH = nHI = 0, we have up to
the second order in :G and :H:

�̂ =
−8nGI
nII


2:G :H

:H 0

 , (S3)

�̂1 =
1
nII


nGG:

2
G + ñII:2

H (nHH − nII):H:G
(nGG − ñII):H:G nII:

2
G + nHH:2

H

 (S4)

and

�̂0 =


ñGG 0

0 nHH

 . (S5)

Here, nHH = =2
> and for the given angle \ between the director of the LC molecules and the G axis

we have

ñGG = =
2
4 5 5 =

=2
>=

2
4

=2
> cos2 \ + =2

4 sin2 \
,

ñII =
=2
4 5 5
(=4

> cos2 \ + =4
4 sin2 \)

=2
>=

2
4

,

(S6)



and nGI = nIG = (=2
4 − =2

>) sin \ cos \.
We wish to find the approximate dispersion relations of modes almost perfectly confined

between the mirrors. Therefore the electric field is expanded as follows:

®� ®: (I) =
∑

B=-,.

∞∑
==1

5B= |B, =〉, (S7)

where the basis states:

|-, =〉 = (−1)=
√

2
!

sin
(=c
!
I

) 
1

0


and

|., =〉 = (−1)=
√

2
!

sin
(=c
!
I

) 
0

1


(S8)

with = = 1, 2, 3 . . ., correspond to the electric field polarised parallel to the G and H axis,
respectively. In this representation the matrix elements:

〈B=|m2
I |B′=′〉 = −

c2

!2 =
2X==′XBB′ , (S9)

〈B=|�̂1,0 |B′=′〉 = (�̂1,0)BB′X==′ . (S10)

couple modes of the same order while the matrix elements

〈B=| �̂mI |B′=′〉 = ( �̂)BB′


4==′

! (=2 − =′2)
for =′ + = odd,

0 for =′ + = even
(S11)

couple only modes with different parity.
At :G = :H = 0 we have simple modal solutions with the electric field ®�G,= = |-, =〉 polarised

along the G axis with frequency l-= = 2:-= = 2c=/(!=4 5 5 ) and ®�H,= = |., =〉 modes polarised
along H direction with l.= = 2:.= = 2c=/(!=>). The degeneracy of modes occurs when
l-= ≈ l.= ≈ l0 =

√
(l2

-=
+ l2

.=
)/2. In order to find the approximate dispersion relation for

frequencies in the vicinity of l0 we solve the system of linear equations for expansion coefficients
5B=: ∑

B′=-,.

∞∑
=′=1
(,̂)B=,B′=′ 5B′=′ = 0 (S12)

where
(,̂)B=,B′=′ =

(
c2

!2 =
2XBB′ + (�̂1)BB′ − :2

0 (�̂0)BB′
)
X==′

+ 〈B=| �̂mI |B′=′〉.
(S13)

In the matrix form we have:
,̂ · ®5 = 0. (S14)

Note that the last term in Eq. (S13) is linear in ®: so the coupling of modes of different parity can
be treated perturbatively. In particular, when the degenerate modes are of the same parity, for
example = = =′ = # or = = # and =′ = # + 2, this last term will lead to the correction of the



second order and higher in ®: . In order to see this we can introduce the projection operator %̂
on the modes of the same parity as # (%̂-parity), and &̂ - the projection operator on the modes
of opposite parity (&̂-parity). Then of course ®5 = %̂ · ®5 + &̂ · ®5 where the first term constitutes
the dominant part of ®5 and the other represents the admixture from the states of opposite parity.
Since we are interested mainly in the dispersion relation, we are looking for the solution for the
dominant part %̂ · ®5 :

(%̂,̂ %̂ − %̂,̂&̂(&̂,̂&̂)−1&̂,̂ %̂) ®5 = 0. (S15)

The matrix &̂,̂&̂ is limited to the subspace of states with &̂-parity and so is its inverse (&̂,̂&̂)−1.
To the lowest (zeroth) order in ®::

((&̂,̂&̂)−1)B=,B′=′ = XBB′X==′
1

c2

!2 =
2 − :2

0 (�̂0)BB
. (S16)

The matrix &̂,̂ %̂ which couples modes of different parity has the form:

(&̂,̂ %̂)B=,B′=′ = ( �̂)BB′
4==′

! (=2 − =′2)
. (S17)

The electric field in the vicinity of the degeneracy point can be approximated by:

®� ®: (I) = 5-< |-, <〉 + 5.= |., =〉, (S18)

and we can consider two situations.
1) The degeneracy of two modes of the same order < = = = # occurs when =4 5 5 = =>, i.e.,

when nGI = 0 and nHH = nGG . In this case the mode mixing term [eq. (S17)] is equal to zero and
the effective equation for the vector ®5 = ( 5-# , 5. # )) is


(:2

0 − :
2
-#
)nGG 0

0 (:2
0 − :

2
. #
)nGG

 ®5 =
1
nII


nGG:

2
G + nII:2

H (nGG − nII):H:G
(nGG − nII):H:G nII:

2
G + nGG:2

H

 ®5 .
(S19)

2) In the case of degeneracy of two modes of different order but the same parity the mixing
term is different from zero so the effective equation for ®5 = ( 5-#+2, 5. # )) :∑

=′=#+2,#

∑
B′=-,.

((
c2

!2 =
2XBB′ + (�̂1)BB′ − :2

0 (�̂0)BB′
)
X==′ +

−
∞∑
<′′

′ ∑
B”=-,.

16==′<′′2 ( �̂)BB” ( �̂)B”B′

(=2 − <′′2) (<′′2 − =′2) (c2<′′2 − !2:2
0 (�̂0)B′′B′′)

)
5B′=′ = 0.

(S20)

where the prime over summation sign means that only <′′ with parity different from the parity of
= and =′ which is the same as the parity of # are included. In this way the denominator is always
different form zero. Approximating :0 ≈ :-#+2 = :. ,# in the denominator of the last term and
defining

/±=,=′ = /
±
=′,= =

∞∑
<′′

′ 16==′<′′2

c2 (=2 − <′′2) (<′′2 − =′2) (<′′2 − (# + 1 ± 1)2)
(S21)

we obtain the following equation for ®5 in the case of the resonance of modes of the order # + 2



and #:
(:2

0 − :
2
-#+2)ñGG 0

0 (:2
0 − :

2
. #
)nHH

 ®5 =
=

1
nII


(nGG + 4/+

#+2,#+2
n2
GI

nII
):2

G + (ñII + /−#+2,#+2
n2
GI

nII
):2

H 2/+
#+2,#

n2
GI

nII
:G:H

2/+
#+2,#

n2
GI

nII
:G:H nII:

2
G + (nHH + /+# ,#

n2
GI

nII
):2

H


®5 .

(S22)
Note that the effective equations in the vicinity of the resonance of modes of the same order
(#, #) [eq. (S19)] and for the case of different orders, (#, # + 2) [eq. (S22)] have similar
structure. However the origin of the term proportional to :G:H , which is responsible for coupling
between the modes is different in each situation. In the (#, #) case we have a direct coupling
between the TE and TM modes whereas the coupling between modes of different order is of
indirect character and is mediated by modes with opposite parity. By standard manipulations,
both equations can be transformed into an eigenvalue problem with a Hamiltonian presented in
the main text.

6. Spin structure and meron orientation from momentum-space Hamiltonian

Fig. S9. Spin polarization from momentum-space Hamiltonian. The left and right
panels show the spin polarization of one of the two eigenmodes of hamiltonian (2) in
the main text (yellow arrows) in the meron and antimeron cases. The other mode has
opposite polarization. The shaded ring depicts the approximate area in momentum
space excited by a resonant laser beam. The polarization on the ring corresponds to the
spin rotation in Fig. 3 in the main text.

The meron and antimeron spin structure results from transmission of light through cavity
modes, which can be approximately described with Hamiltonian (2) in the main text. The
emergence of such structures and the topological charge & can be predicted from the eigenmodes
of the Hamiltonian taking into account that the system is excited with resonant laser light with a
Gaussian envelope in space. In Fig. S9 we show the spin polarisation of one of the Hamiltonian
eigenmodes in the meron (#, #) and antimeron (# + 2, #) case. The shaded ring in momentum
space corresponds to the approximate area excited with resonant light, which results from the
parabolic dispersion relation of the cavity (see Fig. 2 in the main text). The second order meron
spin structure of can be observed on this ring, and is retained after performing Fourier transform
into real space, assuming that the excitation laser beam is Gaussian-shaped.

This simple explanation, however, is incomplete as it neglects the second, orthogonal eigenmode
and does not explain the meron rotation angle discussed in the previous section. To take into



account the second mode, we estimate the amplitude and polarisation of light transmitted through
microcavity. The amplitude of input light can be written as

Ain (k, l) = �(k)�(l)uin, (S23)

where �(k) is a Gaussian shaped amplitude, �(l) is approximately X-shaped laser frequency
spectrum, u8= is the polarisation of input light, e.g. in linear polarization basis u8= = (1, 0)) for a
horizontally polarised light. In the considered cases (#, #) and (# + 2, #) the cavity acts as a
full-wave plate, so the polarisation of cavity mode at the output is not rotated by the cavity. The
output amplitude is

Aout (k) =
∑
8=1,2

C8 (k)�(k)%(uin, u8)u8 , (S24)

where we approximate the cavity transmission coefficient C as a sum of two eigenmodes 8 = 1, 2,
each corresponding to a peak in transmission C8 (k) with a similar amplitude and a Gaussian shape.
The operator %(uin, u8) = uin · u8 is the projection of input light polarisation on the eigenmode of
the Hamiltonian (2) polarisation. The shape of C8 (k) in momentum space is ring-like for each
mode, with slightly differing radii. This results from the parabolic dispersion relation of the
in-plane photonic cavity modes as shown in Fig. 3 in the main text.

Calculations of the above simplified Hamiltonian model are compared with Berreman method
simulations in the case of (# + 2, #) antimeron with f+ excitation in Fig. S10. The approximate
45 degrees orientation of the antimeron results from the overlap of the two rings in momentum
space, with the phase of the transmission coefficients C8 differing by c/2. Such phase difference is
explained by the dependence of the phase of the transmission coefficient on transverse momentum.
This additional phase shift leads to rotation of input circular polarisation into horizontal or vertical
polarisation in the diagonal directions (:G = ±:H), which results in the whirling polarisation
structure in momentum space and the corresponding rotation of the meron orientation.



Fig. S10. Polarisation of transmitted light in momentum space. The top panels show
the results of the Berreman method and the bottom panels the approximate Hamiltonian
(2) in the case of circular input polarisation. The mixing of two modes with orthogonal
polarisations (corresponding to rings with slightly different radii) results in rotation
of the input polarisation in the diagonal directions (:G = ±:H), which transforms the
input circular polarisation into horizontal or vertical one between the rings. This leads
to a helical structure of modes visible both in X-Y (left) and A-D polarisation patterns
and the rotation of orientation by approximately 45 degrees.


