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S1. Harmonic Oscillator Model 
A major benefit of the accelerometer described in the article 

is that its dynamic response closely follows that of a one-
dimensional viscously-damped harmonic oscillator, making it 
possible to convert from measured proof mass displacement to 
an equivalent acceleration using a low-order model. In this 
section, we describe the harmonic oscillator model and the 
conversion between displacement and acceleration. Much of 
the analysis in this section and the next follows directly from 
the work of Gabrielson [S1] but is specifically focused towards 
the optomechanical accelerometer. 

The harmonic oscillator model is described in Fig. S1, where 
a mass-spring-damper system is driven by a base excitation, xe. 
A stochastic force, FL, is also applied to the harmonic oscillator, 
which results in Brownian motion, generating 
thermomechanical displacement noise. The oscillator can be 
described by the following Langevin equation 

 

( ) ( )e e Lmx c x x k x x F+ − + − =    (S1) 
 

where m is the mass, k is the spring stiffness, c is the damping 
coefficient, and x is the displacement of the mass. Defining the 
change in optical cavity length, xc, as c ex x x= −  and the base 
acceleration, ae, as e ea x=   results in the model of interest: 
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where 0 k mω = , 0 02 fω π= , f0 is the resonance frequency in 
the absence of damping, 0Q m cω= , and Q is the quality 
factor. 

The relationship between cavity displacement, xc, and base 
acceleration, ae, as a function of frequency, ω, can be 
determined from eq. (S2) by neglecting the Langevin force, FL. 
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The amplitude of ae can then be written as 
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Fig. S1 Harmonic oscillator model described by a mass-spring-
damper system. m: mass, k: spring stiffness, c: damping coefficient, x: 
proof mass displacement, xe: base displacement, FL: Langevin force.  
 
which has been used to calculate the acceleration data in Figs. 
3d and 4d in the article from displacement measurements. 
Implementing eq. (S4) requires measurement of ω0 and Q. 
Here, this was done by applying a least-squares fit of ( )G iω  
to the data in Figs. 3b and 3c in the article. 
 

S2. Thermomechanical and Optical Shot Noise 
The stochastic force in the Langevin equation, eq. (S1), is 

defined as ( )4L BF k Tc t= Γ , where kB is Boltzmann’s 
constant, T is temperature, and Γ(t) is a Gaussian white noise 
process with a standard deviation of 1 [S1]. Returning to eq. 
(S2), ignoring ae, and taking the power spectral density of xc, 
defined as Sxx, results in 
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The thermomechanical noise in terms of displacement is then 
defined as ( )1 2

th xxx S ω= , or 
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Recalling the conversion from displacement to acceleration, eq. 
(S4), the equivalent acceleration due to thermomechanical 
noise is then 
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Interestingly, ath is only a function of the resonator parameters 
(ω0, m, and Q) and temperature, and not a function of frequency, 
meaning that the thermomechanical noise floor in terms of 
acceleration is flat.  

In addition to thermomechanical noise, optical shot noise is 
the other fundamentally limiting noise source. The power 
spectral density of the optical shot noise is 2PP aS h Pν η= , 
where h is Planck’s constant, ν is the optical frequency of the 
laser, Pa is the average power reaching the photodetector, and η 
is the quantum efficiency of the photodetector. This can be 
converted to shot noise in terms of displacement using 
 

1 2
/ / / / 2s x V V i PP x V V i ax g g R S g g R h Pν η= =   (S8)   

 

The gain gx/V converts photodetector voltage to displacement 
and is discussed in Section S4, while gV/i and R are the 
transimpedance gain and responsivity of the photodetector. 
Recalling eq. (S4), the shot noise in terms of acceleration is     
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Since the thermomechanical noise and shot noise are 
uncorrelated, they can be summed in quadrature to get the total 
noise equivalent displacement, xNE, and acceleration, aNE. 

Unlike the thermomechanical displacement noise, xth, the 
optical shot noise does not represent real resonator motion but 
rather, it is detection noise that is analytically referred to either 
displacement or acceleration. As a result, the best-case scenario 
for a resonator with fixed parameters (ω0, Q, m, T) is for the 
optical shot noise to be lower than the thermomechanical noise. 
In this situation, the optical readout will measure the motion of 
the resonator with minimal contribution from shot noise. This 
is shown in Fig. S2, where the calculated noise floor is 
presented for a resonator with parameters similar to those 
described in the experiments in the article. Three different 
levels of shot noise are shown, where two are above the 
thermomechanical noise (dark blue, light blue) and one is below 
(red). When the shot noise is below the thermomechanical 
noise, the resonance shape is observed over the entire frequency 
range, which provide better estimates of ω0 and Q when fitting 
displacement noise spectra to the harmonic oscillator model. 

After converting the displacement to acceleration, as shown 
in Fig. S2b, the importance of reducing the shot noise is readily 
apparent. The noise equivalent acceleration is nearly flat over 
the frequency range when the shot noise is below the 
thermomechanical noise. Achieving a flat noise floor in 
acceleration is critical for a broadband accelerometer because it 
enables the measurement of signals with widely varying 
frequencies at the same precision level. For example, if the  

 
Fig. S2 Noise equivalent displacement and acceleration for varying 
optical shot noise level. (a) Noise equivalent displacement combining 
thermomechanical noise and optical shot noise at three different shot 
noise levels. ω0 = 2π (9.8 kHz), Q = 70, m = 11 mg, T = 293 K. (b) 
Noise equivalent acceleration based on the displacement noise in (a).    
 
acceleration is a square wave, all of the harmonics within the 
bandwidth of the sensor will be measured with the same 
precision when the noise floor is flat, which means that the 
signal can be accurately reconstructed from the data. If the noise 
floor is frequency dependent, this reconstruction would be less 
accurate since the signal-to-noise ratio will vary across the 
frequency range. 
 

S3. Design of the Mechanical Resonator 

The mechanical resonator has a large square single-crystal 
silicon proof mass (thickness: 525 µm, width: 3.02 mm (Device 
A) or 4.02 mm (Device B)) that is supported by an array of 1.5 
μm thick silicon nitride beams, as shown in Fig. 1 of the article. 
These beams are located around the entire perimeter of the  
proof mass and on both sides of the chip, where the beam length 
is selected to achieve the desired stiffness. This design increases 
the resonance frequencies for rotational modes of the proof 
mass (i.e., rocking modes) so that there is a large separation in 
frequency between the first translational mode (i.e., piston 
mode) and the other vibrational modes.   

Structural finite element analysis (FEA) was performed for 
the two designs (Devices A and B) to assess the effectiveness  
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Fig. S3 Mode shapes for the mechanical resonator. (a) First piston 
mode, and (b) first rocking mode. Red indicates maximum 
displacement and dark blue represents no displacement. 
 
of mode separation due to the flexural constraints. Figure S3 
shows representative mode shapes for the first piston mode and 
first rocking mode. The piston mode is the mode of interest for 
detecting accelerations perpendicular to the chip surface. This 
mode exhibits pure translation of the proof mass along the 
optical axis, such that proof mass displacement causes a length 
change of the optical cavity. It was found that the resonance 
frequency of the first rocking mode is higher than the piston 
mode by a factor of 11.6 for Device A and 7.8 for Device B. 
This mode separation is sufficient to ensure that the rocking 
mode does not appear within the measurement bandwidth used 
for Fig. 3 in the article. The closest mechanical mode detected 
in experiments is above 60 kHz, or a factor of 6 higher than the 
piston mode, as shown in Fig. S4b.   
 

S4. Converting from Photodetector Voltage to 
Displacement 

Displacement of the proof mass results in a change in cavity 
length, which is measured by the cavity readout. With the 
probing laser locked to the side of a TEM00 optical resonance, 
the cavity length change, ΔL, is transduced by measuring the 
change in the center wavelength of the optical resonance, Δλ, 
using: 

 

LL λ
λ

∆ = ∆   (S10) 
 

where L is the nominal cavity length and λ is the nominal laser 
wavelength at the lock point. The change in the center 
wavelength, Δλ, is related to the reflected laser intensity from 
the cavity that is measured with a photodetector, resulting in a 
voltage change, ΔV. The relationship between voltage and 
wavelength is defined by the slope of the optical resonance at 
the locking point, dV/dλ, as shown in the inset of Fig. S4a. The 
laser was locked to the point of greatest slope for the highest 
transduction sensitivity. In this way, the displacement of the 
proof mass is found using: 
 

/x V
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  (S11) 

 

The parameters (L, λ, dV/dλ) are directly found from a spectral 
measurement of the cavity over a full free spectral range (FSR) 
and the voltage change, ΔV, is measured with an electronic 
spectrum analyzer (ESA). 

 
Fig. S4 Cavity readout with the external cavity diode laser. (a) 
Schematic of the cavity readout for the accelerometer using both the 
external cavity diode laser (ECDL) and fiber laser (FL). EOM: electro-
optical modulator, SW: switch, OSA: optical spectrum analyzer; CIR: 
circulator, BPD: balanced photodetector, PD: photodetector, VOA: 
variable optical attenuator, ESA: electronic spectrum analyzer, LPF: 
low-pass filter, VCO: voltage-controlled oscillator. (b) Displacement 
noise spectra for the accelerometer when using the ECDL and FL. 

 
S5. Readout Using the External Cavity Diode Laser 
Two different lasers were used for cavity readout: a 

continuously tunable external cavity diode laser (ECDL) and a 
tunable fiber laser (FL) that is phase modulated with an electro-
optic modulator (EOM). The ECDL has a wide wavelength 
tuning range and precise piezo-based wavelength control, 
allowing for cavity characterization and FSR measurements, as 
shown in Fig. 2 of the article. In comparison, the FL has a slow 
tuning rate and a much narrower tuning range. Furthermore, the 
internal feedback locking module of the ECDL enables direct 
and convenient cavity displacement readout. However, the 
ECDL has more internal frequency noise than the FL, which 
appears as noise equivalent displacement. Therefore, the FL 
was used for the displacement noise floor measurements in Fig. 
3 of the article since it has a cleaner frequency spectrum. Details 
on the readout method using the FL are described in the article. 
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Here, we provide additional information on the readout with the 
ECDL.  

As shown in Fig. S4a, the main differences between using the 
ECDL and FL are the wavelength tuning method and the 
feedback servo loop. Wavelength tuning with feedback is 
achieved in the ECDL with a piezoelectric actuator in the 
external cavity. Therefore, unlike the FL, an EOM is not needed 
for locking. Regarding the implementation of the servo, the 
ECDL has an internal digital proportional-integral-derivative 
(PID) feedback controller while the FL servo uses an external 
analog PID controller. 

A comparison of the displacement noise spectra from the 
accelerometer is shown in Fig. S4b for both readout lasers. No 
mechanical resonances other than the fundamental near 10 kHz 
are observed in the accelerometer up to 60 kHz. In general, the 
responses from the two lasers are very similar. However, the 
ECDL exhibits several resonances near 1.3 kHz that were 
determined to be mechanical resonances within the external 
cavity of the laser. The measurements in Fig. 4 of the article 
were performed with the ECDL since the resulting 
displacements are well above the noise floor and the ECDL 
provides wider tuning range and simpler operation.  
 

S6. Resonator Mass 
The value of the proof mass in the mechanical resonator was 

calculated using the designed geometry and approximate 
densities for single-crystal silicon and the optical coatings, 
resulting in 11.07(53) mg for Device A and 19.59(94) mg for 
Device B. The main source of uncertainty in the mass is the 
variation in the silicon wafer thickness (±25 µm) which gives a 
relative uncertainty of approximately 5 % for the calculated 
mass. This only limits the a priori estimate of the mass, not the 
uncertainty of the acceleration measurement, which relies on in 
situ measurement of ω0 and Q. 

A similar proof mass from the same fabrication process was 
measured for Devices A and B after being removed from the 
chip. The masses were calibrated by the NIST Mass and Force 
Group and found to be 11.13 mg for Device A and 19.88 mg for 
Device B, which deviate from the calculated value by 0.5 % and 
1.5 %, respectively. Any microbeams adhering to the proof 
mass after removal would increase the mass by less than 20 µg, 
and the uncertainty of the calibrated values [S2] is also 
negligible relative to the uncertainty of the calculated values. 
 
S7. Uncertainties in Parameters Estimated from Fits 

Fitting thermomechanical noise spectra allows ω0, Q, and m 
to be measured, given the temperature. These values can vary 
over time due to changes in laboratory conditions, such as 
temperature, aging from sources including curing of packaging 
adhesive or accumulated stress from cycling between air and 
vacuum. To estimate the associated uncertainties, we use the 
standard deviation of multiple measurements on a device over 
a period of approximately eleven months. The uncertainty 
reported by the fitting routines is not included in the stated 
uncertainty as it is small compared to the variation over a year, 

even when accounting for variation in fitting procedures. This 
represents a conservative estimate for the measurements 
reported here. The uncertainty can be substantially reduced, for 
example by measuring ω0 and Q immediately before and after 
acceleration measurement, but best practice for accurate 
acceleration metrology with the devices is outside the scope of 
this work and will be reported elsewhere. For Device A the 
relative uncertainties for ω0, Q, and m are approximately 0.2 %, 
2 %, and 8 %, respectively. Only the uncertainties in ω0 and Q 
directly contribute to the uncertainty in acceleration 
measurement. 
 

S8. Homodyne Interferometer 
The homodyne Michelson interferometer used to test the 

accelerometer on a shaker table is shown in Fig. 4a from the 
article. A 632.8 nm stabilized HeNe laser is split into the 
measurement and reference arms of the interferometer using a 
non-polarizing 50/50 beam splitter. The light in the reference 
arm is reflected off of a piezoelectric-actuated mirror and light 
in the measurement arm is reflected off of a 5 mm square gold 
mirror mounted on the optomechanical accelerometer package. 
The reflected light from both arms interferes on a 
photodetector. The interferometer is locked to the quadrature 
point (i.e., point of highest fringe slope) using the piezoelectric 
mirror in the reference arm and a servo controller with a 
bandwidth below 100 Hz. Shaker vibrations above the servo 
bandwidth are measured with the interferometer and are 
converted to displacement using the measured fringe amplitude 
and laser wavelength, resulting in a noise floor of 
approximately 60 fm/√Hz above 1 kHz. The optomechanics for 
the interferometer sit on the same optical table as the shaker 
table, making them susceptible to vibrations driven by the 
shaker, as seen in the data in Fig. 4 from the article. 
 

S9. Linearity of the Shaker Table 
The comparison between the accelerometer and laser 

interferometer shown in Fig. 4 of the article required that the 
excitation amplitude of the shaker be different when using the 
two measurement methods. This was due to the higher 
sensitivity of the accelerometer relative to the interferometer by 
a factor of approximately 600. As a result, higher excitation 
amplitudes were required for detection with the interferometer. 
These high excitation amplitudes could not be used while 
reading out the microcavity in the accelerometer because the 
side lock could not be maintained. The end result was that 
measurements with the interferometer were performed with 
excitation amplitudes that were as much as 50 times greater than 
with the accelerometer readout. Due to this, the reported 
displacement and acceleration data are normalized by the 
shaker drive voltage.  

 This approach to the comparison is acceptable as long as the 
piezoelectric shaker table has a linear response for increasing 
excitation voltage. The linearity of the shaker table was 
characterized over a range of excitation voltages and 
frequencies, as shown in Fig. S5. The displacement of the 
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Fig. S5. Linearity of the shaker table. (a) Shaker table displacement 
as a function of excitation voltage at a drive frequency of 2 kHz. (b) 
Residuals from a linear fit to the data in (a). The residuals are an 
absolute value of the difference between the data and fit, expressed as 
a percentage of the fit value. Blue lines represent the mean (dash) and 
standard deviation (dash-dot) over the range of excitation voltages. (c) 
Mean and standard deviation residuals of the linear fit as a function of 
drive frequency. Blue line represents the mean over all frequencies. 
 
shaker table for increasing excitation voltage at a single 
frequency (2 kHz) was found to be highly linear (Fig. S5a). The 
residuals for a linear fit to the data in Fig. S5a show a deviation 
from linearity of no more than 3 % and this deviation is much 
lower at higher excitation voltages due to the improved signal-
to-noise ratio (Fig. S5b). Additional linearity measurements 
were performed between 2 kHz and 7 kHz and the mean and 
standard deviation of the linear fit residuals were calculated 
(Fig. S5c). The shaker is linear within 3 % across the entire 
frequency range with the exception of an outlier at 6 kHz and 
the mean residual is 1.1 %. This level of linearity is more than 
adequate for the comparison between the accelerometer and 
interferometer, which is discussed further in the next section.  

    
S10. Accelerometer and Interferometer Comparison 

The data in Fig. 4c of the article was analyzed to compare the 
results from the accelerometer and interferometer when 
operating on the shaker table. The deviation of the 
accelerometer from the interferometer was calculated as a 
percentage, as indicated by the blue dots in Fig. S6. A moving 
average filter was applied to the data from the interferometer 
because noise in the data was found to be a major contributor to 
the deviation between the two measurements. This resulted in 
the black line in Fig. S6, showing a significant improvement in 
the comparison. The deviation for the filtered data is 5.4 % ± 
15.9 % (average ± standard deviation) over the entire drive 
frequency range (1 kHz to 20 kHz). When looking at a narrower 

 
Fig. S6. Comparison of the accelerometer and interferometer 
results on the shaker table. Blue dots: deviation of the accelerometer 
results from the interferometer results. Black line: Same data set as 
blue dots but filtered using a moving average. 
 
frequency range from 4.5 kHz to 11 kHz, the deviation is −0.1 
% ± 9.7 %. This deviation between accelerometer and 
interferometer is due to a number of factors but appears to be 
dominated by: 1) coupling between the shaker table and 
optomechanics in the interferometer, 2) dynamics of the 
stainless-steel package, and 3) the mounting interface. Each of 
these will be explored in future work. 
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