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1. LIGHT PROPAGATION IN ANISOTROPIC INHOMOGENEOUS MEDIA AND VECTO-
RIAL INVERSE SCATTERING

Here, we discuss the propagation of light and scattering problem for a weak anisotropic scatterer
placed in a homogeneous and isotropic background medium. Starting from Maxwell’s equations
for a monochromatic wave,

∇× ~E = jω~B (S1a)

∇× ~B = −jω/c2εr~E (S1b)

where, εr is the relative permittivity tensor, ω is the temporal frequency, and c is the speed of light
in vacuum, we can get the following equation,

∇×∇× ~E = −∇2~E +∇∇ · ~E = ω2/c2εr~E (S2)

We can define the refractive index tensor of the birefringent sample as,

εr =
(

n01 + δn
)2
≈ n2

01 + 2n0δn = n2
01 + δε (S3)

where, n0 is the refractive index of the isotropic background medium, and δn and δε are the
refractive index and permittivity tensors of the anisotropic scatterer relative to the background. 1

is the identity matrix. Diagonalization of the refractive index tensor we defined in Eq. S3 yields
the phase velocity of the polarization eigenstates. The term of ∇∇ · ~E can lead to polarization
coupling even in the absence of birefringence, i.e. for a sample with scalar permittivity. This
term can be neglected if the scale of the variation of the permittivity (or the envelope of the field)
is much larger than the wavelength (the slowly varying envelope approximation), λ� ξ(δε) 1

[1] , which is equivalent to the paraxiality [2]. We assume that the only reason for polarization
coupling is the birefringence of the sample since the sample varies slowly with respect to the
wavelength. The total field vector, ~E, can be represented as the summation of the incident, ~Ei,
and scattered, ~Es, field vectors. By considering the fact that

(
∇2 + k2

0n2
0
)
~Ei = 0, we have,(

∇2 + k2
0n2

0

)
~Es = −k2

0δε~E (S4)

k0 is the light wave-vector in the free-space. The right hand side of this equation is a vector that
functions as a scattering source, and we look for the solution of vector ~Es that satisfies Eq. S4. The
left hand side of this equation is related to the background medium, n0 which is isotropic and
homogenous. This makes each component of these vectors (left and right side) uncoupled from
each other. So, the Green’s function of this equation can be represented by a diagonal tensor with
same components for each polarization,

G =


g(r, r′) 0 0

0 g(r, r′) 0

0 0 g(r, r′)

 (S5)

1ξ(δε) is the correlation length of the inhomogeneity of the sample, which can be defined as 〈δε (r) |δε (r′)〉 ≈ e−(r−r′)/ξ .



in which, g (r, r′) = ejk0n0(r−r′)/|r− r′| , same as the scalar case. Now, we assume the first-order
Born approximation, and replace the field vector in the right hand side of Eq. S4 with the input
unperturbed beam. Defining the scattering potential tensor as V = k2

0δε/4π, we can represent
the scattered field vector as,

~Es (r) =
∫

G
(
r, r′
)
×V(r′)× ~Eillum(r′) d3r′ (S6)

There is an important point regarding Eq. S6. In Eq. (15) of [3], the scattered field under the Born
approximation is derived as,

~Es (|r| û) =
∫

G
(
r, r′
)
×V(r′)×

(
~Eillum (r′)− û · ~Eillum (r′)) d3r′ (S7)

û is the unit vector along the scattered field component. Unlike Eq. S6, Eq. S7 has the û · ~Eillum

term. It can be followed in [3] that this term is coming from ∇∇ · ~E in the vectorial Helmholtz
equation which we neglected. In the topic of paraxiality, we can say that the scattered field has
the spatial frequency components that are very close to the incident illumination, ~ki, and as a
result, we will have û · ~Eillum ≈ 0 which will lead to the same equation as ours. This shows the
equivalence of the slowly varying approximation, paraxiality, and the approximation that the
light does not depolarize due to the inhomogeneity of the sample. It should be noted that in
the scalar case, the relationship between the scattered field and the scattering potential becomes
linear, under the Born approximation. However, if we do not neglect the ∇∇ · ~E term, due to the
presence of the spatial frequency component of the scattered field, û, on the right side of Eq. S7,
the relationship remains nonlinear even under the Born approximation. This is the reason why
we actually neglect this term, which is valid for slowly-varying samples.

In the general case, the scattering potential tensor in Eq. S6 as well as the refractive index
tensor are 3× 3 tensors. However, the polarization state of the illumination beam ~Eillum should
be perpendicular to its wave-vector, and as a result, can only have two independent states. Lets us
consider two separate experiments with two different and independent polarization states for
Eillum. We can put these two experiments in the same framework by representing the incident
field in two different columns of a 3× 2 matrix. We assume that the measured fields are in XY
coordinate system:

Es
x1 (r) Es

x2 (r)

Es
y1 (r) Es

y2 (r)

Es
z1 (r) Es

z2 (r)

 =
∫

G
(
r, r′
)
×V(r′)×


Eillum

x1 (r′) Eillum
x2 (r′)

Eillum
y1 (r′) Eillum

y2 (r′)

Eillum
z1 (r′) Eillum

z2 (r′)

 d3r′ (S8)

By assuming a plane wave illumination, ~Eillum (r′) = Ẽillumej~ki ·r′ (Ẽillum is the illumination field
amplitude, and~ki is its wave-vetor), Eq. S8 can be written as:

Es
x1 (r) Es

x2 (r)

Es
y1 (r) Es

y2 (r)

Es
z1 (r) Es

z2 (r)

 =

[∫
G
(
r, r′
)
×V(r′)ej

−→
ki .r′d3r′

]
×


Ẽillum

x1 Ẽillum
x2

Ẽillum
y1 Ẽillum

y2

Ẽillum
z1 Ẽillum

z2

 (S9)

It can be seen from Eq. S9 that all the 9 components of the 3× 3 scattering potential tensor cannot
be retrieved using only two independent input polarization states. We can approximate this
equation with a 2× 2 representation of the fields and the scattering potential tensors, Es

x1 (r) Es
x2 (r)

Es
y1 (r) Es

y2 (r)

 ≈ [∫ G
(
r, r′
)
×V2×2(r′)ej

−→
ki .r′d3r′

]
×

 Ẽillum
x1 Ẽillum

x2

Ẽillum
y1 Ẽillum

y2

 (S10)

V2×2 is the 2× 2 block matrix of the full scattering potential tensor whose definition can be
clarified as,

V =

 V2×2
Vxz

Vyz

Vzx Vzy Vzz

 (S11)
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Fig. S1. Comparison of the scattered vectorial fields for the birefringent digital phantom based
on the vectorial single scattering and V-BPM. Four rows represent the components of the Jones
matrix. First and second columns show the imaginary part of Jones components based on the
single scattering and V-BPM model, respectively. Third and fourth columns show the real parts
of them, and the last column shows the absolute value of the difference between the single
scattering model and V-BPM.

From now, the 2× 2 scattering potential tensor is refereed as V and we drop the 2× 2 index.
More details about this approximation and accuracy of that is further discussed in section 3 of
this document.

Writing Eq. S10 in the Fourier domain and using the Fourier diffraction theorem [4], we arrive
at the vectorial version of the Wolf transform as follows:

V(kx − kin
x , ky − kin

y , kz − kin
z ) =

kz

2π j
F2D


 Es

x1 Es
x2

Es
y1 Es

y2

 Ẽillum
x1 Ẽillum

x2

Ẽillum
y1 Ẽillum

y2

−1
(kx, ky

)
(S12)

where, kz =
√

k2 − k2
x − k2

y, and F2D is the 2D Fourier transform. This equation maps the 2D
Fourier components of the Jones matrix to the 3D Fourier components of the scattering potential
tensor. The Fourier transforms should be applied independently for each term of the matrices.

2. VECTORIAL BEAM PROPAGATION METHOD

We start from the vectorial Helmholtz equation:(
∇2 + k2

0εr·
)
~E = 0 (S13)

We can define the complex vector envelope of ~ψ(r) as,

~E(r) = ~ψ(r)ejk0n0z (S14)

By assuming the slowly varying envelope approximation and neglecting ∂2/∂z2~ψ(r), we can
rewrite Eq. S13 as follows,

∂

∂z
~ψ (r) =

j
2k

(
1∇2

t + k2
0εr

)
~ψ (r) =M1

{
~ψ (r)

}
+M2

{
~ψ (r)

}
(S15)
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Fig. S2. Error of the single scattering forward model with respect to V-BPM for different digital
phantoms as the degree of birefringence increases.

where the diffraction operator,M1, is a diagonal operator, andM2 is the phase and amplitude
modulation operator. Like the scalar BPM, the solution of this equation can be approximated as,

~ψ (x, y, z + dz) ≈ eM2dzeM1dz~ψ (x, y, z) (S16)

This approximation comes from the fact that operatorsM1 andM2 do not necessarily commute
with each other and as a result we have e(M2+M1)dz 6= eM1dzeM2dz. However, based on the
Baker-Campbell-Hausdorff formula [5], we can make this approximation for a small dz. Then,
the diffraction operator,M1, is a diagonal operator which we can be implemented in the Fourier
domain:

eM1dz~ψ (x, y, z) = F−1
{

1e−j
k2

x+k2
y

2k dz ×F
{
~ψ (x, y, z)

}}
(S17)

A more accurate way of implementing the diffraction operator with a nonparaxial version is
presented in [6] where we replace the multiplier in Eq. S17 with exp(−j(k2

x + k2
y)/(k + kz)dz).

The role of operator M2 is the phase modulation of the complex vector of ~ψ (x, y, z), during
the propagation through the step, dz, with the refractive index tensor. This is an operator with
off-diagonal components which leads to the polarization coupling as light propagates through
the birefringence sample. Using Eq. S3, we can write it as,

eM2dz~ψ (x, y, z) = expm(jk0δn(x, y, z)dz)× ~ψ (x, y, z) (S18)

operator expm is the matrix exponential. For a matrix, A, the matrix exponential can be defined
as,

expm (A) =
∞

∑
k=0

Ak

k!
(S19)

If we diagonalize the matrix A = UDU−1, where D is a diagonal matrix with the eigenvalues of
A, the exponential of that can be written as expm (A) = UeDU−1. This way, the eigenvalues of
the phase modulation matrix in Eq. S18 will be ejk0µ1

n and ejk0µ2
n where µ1,2

n are the eigenvalues of
the refractive index tensor [7].

It should be noted that both amplitudes and phases of each element of the field will change
while the overall amplitude of the vector remains unchanged. In [8], it has been shown that we
can get more accurate results if we replace dz with dz/cosθ, owing to the fact that the length of
propagation will scale with the illumination angle. Finally, we can write the following equation
to summarize V-BPM:

~ψ (x, y, z + dz) = expm
(

jk0δndz/cosθ
)
×F−1

2D

{
e−j

k2
x+k2

y
k+kz

dz ×F2D
{
~ψ(x, y, z)

}}
(S20)
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Fig. S3. Verification of V-BPM using FEM: calculated |Ey|/|Ein
x | by FEM (COMSOL) for (a)

normal incidence and (b) oblique incidence with θ = 25◦ and using V-BPM for (c) normal and
(d) oblique incidence with θ = 25◦.

As the reconstruction method is based on the single scattering model (Rytov approximation), the
accuracy of reconstruction is directly related to the validity of the single-scattering approximation.
In order to test this validity, we generated synthetic scattered field measurements using V-BPM
and compared them with the ones generated using the single scattering model (Eq. S8). For
a digital birefringent phantom (same as the one which is shown in section 6), we compare the
complex fields achieved after the scattering from the phantom. We show this comparison in
Fig. S1. Imaginary and real parts of the complex Jones matrix components are presented. Each
row shows one of the 4 components of the Jones matrix, columns show the imaginary and real
parts of it, acquired using the single scattering forward model and V-BPM. The last column
shows the absolute value of their differences. You can see the pronounced differences around the
edges where we have strong scattering. In Fig. S2, we tried 4 different phantoms by increasing
the degree of their birefringence (off diagonal refractive index), and we calculated the error
between the single scattering model and V-BPM. We can see that the stronger is the birefringence,
we have a larger value of error. This is independent from the fact that how much the sample
is scattering, while in these 4 phantoms, the strongness of scatterer is relaxed by keeping the
diagonal components of the refractive index fixed.

In order to verify the accuracy of our V-BPM, we did a full-wave 3D simulation with finite
element method (FEM). This simulation has been done using a commercial FEM solver, COMSOL
Multiphysics 5.4. In this simulation, we illuminate a birefringent sphere with a refractive index
tensor of

n = n01 +


0.09 0.02 0.02

0.02 0.09 0.02

0.02 0.02 0.09

 (S21)

which is placed in the background homogeneous medium with refractive index n0. We study
two cases of a normal illumination with input X-polarized light and an oblique illumination
with X-polarization state with θ = 25◦ in the YZ-plane. Results are presented in Fig. S3. We
show the YZ field profiles and compare it with V-BPM. We can see a good agreement between
these two methods even for the case of oblique illumination. It should be noted that due to the
computational reasons we use a Tetrahedral meshing in the FEM simulation and a rectangular
meshing in the V-BPM.
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3. APPROXIMATION OF THE 3×3 SCATTERING POTENTIAL TENSOR WITH A 2×2
TENSOR

As discussed in section 1 of this document, the refractive index and the scattering potential tensor
are 3× 3 tensors in the general case. However, considering Eq. S8, we need three independent
illumination polarization states to make the illumination field tensor an invertible matrix. We
can explain this issue using Jones formalism, in which the Jones matrix of the sample for each
illumination angle can be defined as ~Et = ~Es + ~Eillum = J~Eillum. We can rewrite Eq. S9 using
Jones formalism as, (

J3×3(r)− 13×3

)
ej
−→
ki .r =

[∫
G
(
r, r′
)
×V(r′)ej

−→
ki .r′d3r′

]
(S22)

Reconstruction of full 3× 3 scattering potential tensor is possible using the Fourier diffraction
theorem (similar to Eq. S12), if we had the full 3× 3 Jones matrix for each illumination angle.
However, retrieval of such a Jones matrix is not feasible with 3× 2 field tensors that we have in
Eq. S8.

In this regard we substitute the 3× 3 Jones matrix and scattering potential tensor in Eq. S22
with 2× 2 tensors and discuss the justification and validity range of this approximation. Using
the Jones formalism, we can write the following matrix representation,

Eout
x1 Eout

x2

Eout
y1 Eout

y2

Eout
z1 Eout

z2

 =


Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz




Eillum
x1 Eillum

x2

Eillum
y1 Eillum

y2

Eillum
z1 Eillum

z2

 (S23)

Clearly, we do not have enough equations to find a 3× 3 Jones matrix from these fields. We can
rewrite this equation using block-matrices:

 E
out
2×2

Eout
z1 Eout

z2

 =

 J2×2
Jxz

Jyz

Jzx Jzy Jzz


 E

illum
2×2

Eillum
z1 Eillum

z2

 (S24)

as a result we will have,

E
out
2×2 = J2×2 × E

illum
2×2 +

JxzEillum
z1 JxzEillum

z2

JyzEillum
z1 JyzEillum

z2

 (S25)

Using the rotational matrix which is described in Eq. (5) of the manuscript, we can find the
components of Eillum. In the case of left-handed and right-handed input polarizations we have
Eillum

z1 = − sin θ cos (π/4− ϕ) and Eillum
z2 = sin θ cos (π/4 + ϕ). So, we will have,

J2×2 = E
out
2×2 ×

(
E

illum
2×2

)−1
− sin θ

−Jxz cos (π/4− ϕ) Jxz cos (π/4 + ϕ)

−Jyz cos (π/4− ϕ) Jyz cos (π/4 + ϕ)

(E
illum
2×2

)−1

(S26)
The first term of Eq. S26 is what we use in Eq. S12 to reconstruct 2× 2 scattering potential. We call

it as the approximated Jones matrix, J
appro
2×2 . On the other hand, we call the Jones matrix including

the right term in Eq. S26 as the true Jones matrix, J
true
2×2.

We can rewrite Eq. S26 as follows,

J
true
2×2 = J

appro
2×2 −

 f11(θ, ϕ)Jxz f12(θ, ϕ)Jxz

f21(θ, ϕ)Jyz f22(θ, ϕ)Jyz

 (S27)

where f11(θ, ϕ), f12(θ, ϕ), f21(θ, ϕ), and f22(θ, ϕ) can be found using Eq. Eq. S26 after inversion

of E
illum
2×2 .

We show the values of f11(θ, ϕ), f12(θ, ϕ), f21(θ, ϕ), and f22(θ, ϕ), in Fig. S4(a) for illuminations
with a conical pattern. We can see that the maximum of these values is sin θ, which relates to the
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Fig. S4. (a) Values of f11(θ, ϕ), f12(θ, ϕ), f21(θ, ϕ), and f22(θ, ϕ) for 90 projections with a coni-
cal pattern. (b) Calculated Vappro

xy , (c) Vtrue
xy , and (d) their difference regrading Eq. S28. (e) His-

togram diagram of the true scattering potential values, and (f) the difference regrading Eq. S28.

NA of the objectives. In our case, sin θ = 0.4 and the method is more accurate for illumination
angles with smaller θ. For many cases like tissues that are placed on a coverslip (in XY-plane), the
Jxz and Jyz terms are negligible as the tissue fibers are in XY-plane. However, even for the cases
with Jxz and Jyz comparable to Jxy and Jyx, almost 50 % of projections have f (θ, ϕ) valuse smaller
than 0.3.

However, the main reason that this is a good approximation can be justified by applying Fourier
diffraction theorem on Eq. S27. Wolf’s method is a linear transform, and as a result,

V
true
2×2(kx − kin

x , ky − kin
y , kz − kin

z ) = V
appro
2×2 (kx − kin

x , ky − kin
y , kz − kin

z )−

kz

2π j
F2D


 f11(θ, ϕ)Jxz f12(θ, ϕ)Jxz

f21(θ, ϕ)Jyz f22(θ, ϕ)Jyz

 ej~kin ·~r

(kx, ky
) (S28)

the second term in Eq. S28 is the 3D tensorial reconstruction which is achieved by applying
Wolf’s method on 2D components of the tensor. It can be seen in Fig. S6 that Jones matrix
components change slightly for different illumination angles, and especially for the case of a
thin-transparency, Jones matrix components such as Jxz or Jyz remain exactly similar for different
illumination angles. In this situation, different projections with opposite signs of f (θ, ϕ) will
cancel each other during the averaging process in Fourier diffraction theorem over different
illumination angles. For our numerical phantom, as we can calculate all of the 3× 3 Jones matrix
components, we can evaluate the accuracy of this approximation. In this regard, the xy component
of the approximated scattering potential, Vappro

xy , and the true scattering potential, Vtrue
xy , as well

as the 3D reconstruction of the second term in Eq. S28 are shown in Fig. S4. We calculated the
mean squared error (MSE) for this approximation as 7%. Additionally, for a better comparison of
the true scattering potential and the error, Figs. S4(e-f) show the histogram diagrams of these 3D
reconstructions in the plane of best focus. According to these figures, most of the values for the
error is concentrated on zero or near zero, while the true reconstruction is very well distributed.
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4. RELATIONSHIP BETWEEN RECONSTRUCTIONS PERFORMED IN DIFFERENT PO-
LARIZATION STATES

As discussed in the manuscript, the cross-polarized light shows zero intensities especially at the
background regions, and it results in random phase values. This makes the calibration of the
off-set phase (which is necessary due to the phase fluctuations in the holography setups), and
unwrapping challenging. To overcome this issue, we use the idea to make the input and measured
polarization states differ by 45◦. So, we illuminate a sample with +45◦ and −45◦ polarization
states (a and b) with respect to the XY coordinate, and measure X-polarized and Y-polarized lights.
This configuration guaranties to have the background light intensity in all the measurements and
avoid random phases. Now we explain how to convert these 4 tomographic reconstructions of
the scattering potential, Vxa, Vya, Vxb, and Vyb to the components of the scattering potential tensor,
Vxx, Vyx, Vxy, and Vyy. At first, we find the relationship for the case with Born approximation.
According to Eq. S12, for two experiments of illumination with a-polarized and b-polarized light,
we have:

V(kx − kin
x , ky − kin

y , kz − kin
z ) =

kz

2π j
F2D


 Es

xa Es
xb

Es
ya Es

yb

 ẼIxa ẼIxb

ẼIya ẼIyb

−1
(kx, ky

)
(S29)

where ẼIij is the amplitude of the input field component along i polarization when input field is
j = a, b polarized. Since, the input polarization is ±45◦, we have ẼIxa = ẼIya = ẼIxb = −ẼIyb.
By rewriting Eq. S29,we can get:

V(kx − kin
x , ky − kin

y , kz − kin
z ) =

kz

2π j
F2D

 1
2ẼIxa

 Es
xa Es

xb

Es
ya Es

yb

 1 1

1 −1

(kx, ky
)

=
kz

2π j
F2D

1
2

 Es
xa/ẼIxa + Es

xb/ẼIxb Es
xa/ẼIxa − Es

xb/ẼIxb

Es
ya/ẼIya − Es

yb/ẼIyb Es
ya/ẼIya + Es

yb/ẼIyb

(kx, ky
)
(S30)

we can consider Vij, i ∈ x, y, and j ∈ a, b, as the 3D scalar scattering potential which is recon-
structed by applying the Wolf transform on Es

ij/ẼIij. As a result, we will have:

V =

 Vxx Vxy

Vyx Vyy

 =
1
2

 Vxa + Vxb Vxa −Vxb

Vya −Vyb Vya + Vyb

 (S31)

In the case of the Rytov approximation, we can replace Es
ij/ẼIij with log(1 + Es

ij/ẼIij) in Eq. S30.
This gives us the same result as Eq. S31 to convert the reconstructed Rytov-based scalar scattering
potentials to the elements of V.

As a result, based on the linear functionality of the scattering potential with scattered fields,
achieved thanks to the single-scattering assumption, we can use Eq. S31 to calculate the scattering
potential tensor elements using the ±45◦-polarized data.

5. EFFECT OF A TILTED POLARIZER

According to the experimental setup in Fig. 3(a) of the manuscript, we put a polarizer after the
imaging system to measure the desired output polarizer. However, this polarizer is illuminated
obliquely while scanning the illumination angle. Therefore, the Jones matrix of a tilted polarizer
changes depending on its angle and is different from when it is illuminated normally. To analyze
the effect of tilted polarization, we use the Fainman-Shamir model [9]. According to this model
which is for an ideal polarizer, the Jones matrix of a polarizer can be achieved as,

JP =

(
P̂A − P̂A.k̂in

) (
P̂A − P̂A.k̂in

)†

1− (P̂A.k̂in)
2 (S32)

in which, P̂A is the unitary vector along which the polarizer/analyzer are aligned (in the plane
of the polarizer), and k̂in is the unitary vector of the incident wave-vector. In our setup we use
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Fig. S5. The off-diagonal component of the Jones matrix of an ideal polarized as it is illumi-
nated with a tilted beam as we scan ϕ.
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Fig. S6. The Jones matrix of the digital phantom calculated with the V-BPM for 3 different
projections. Same data for 180 projections are used to reconstruct the 3D phantom.

a 60X imaging system which means a 60X angular demagnification. This way, the polarizer is
illuminated with a 0.5◦ angle (∼ 30◦/60). The off-diagonal term, Jxy, of the Jones matrix, JP, is
shown in Fig. S5. According to this figure, we can see that this term is very small, comparing to
Jxx and we can completely neglect this effect. Specially, a calibration step, which measures both
co and cross polarizations without the sample will handle these inaccuracies. Moreover, the most
important issue to be considered for the tilted illumination is the rotational matrix described as
Eq. (8) in the manuscript.

6. NUMERICAL RESULTS

Here, we present more figures about the numerical results partly presented in the manuscript. For
the digital phantom which we discussed in the paper, we show the Jones matrix calculated for 3
different illumination angles, ϕ = 0◦, ϕ = 120◦, ϕ = 240◦ in Fig. S6. Same as the paper, complex
values are coded using the brightness and color (amplitude and phase, respectively) in the figure.
The circular diffraction pattern along the illumination direction is clear in the amplitude of the
total field. In the absence of the sample, the off-diagonal terms of the Jones matrix are zero, which
means that there is no cross-polarization coupling. In Fig. S7, we show the full reconstruction
of the refractive index tensor, which we showed only two of them, nxx, and nyx in Fig. 5 of the
manuscript. For each component of the refractive index tensor, the first row shows the ground-
truth and the second row shows the reconstruction using the polarization-sensitive ODT with
Rytov approximation. Here, we show the YX, XZ, and YZ profiles of the 3D reconstruction.

An important issue regarding the refractive index tensor is the fact that the off-diagonal com-
ponents of this tensor do not present any inherent information, by their own value, regarding
the birefringence, or orientation of the slow-axis (or fast axis) of the sample. In fact, the latest

9



YX YZ XZ
��

�
G

ro
un

d 
Tr

ut
h

��
�

G
ro

un
d 

Tr
ut

h
��

�
Re

co
ns

tr
uc

tio
n

��
�

Re
co

ns
tr

uc
tio

n

-0.015

0.090

0.006

-0.006

YX YZ XZ

��
�

G
ro

un
d 

Tr
ut

h
��

�
Re

co
ns

tr
uc

tio
n

-0.015

0.090

��
�

G
ro

un
d 

Tr
ut

h
��

�
Re

co
ns

tr
uc

tio
n

0.006

-0.006

Fig. S7. Polarization-sensitive reconstruction of the digital phantom using the Rytov approxi-
mation. For each component of the tensor, we show the ground-truth and the reconstruction in
YX, YZ and XZ planes. Dashed lines show the lines that we show the profile of the index along
them.

parameters have a physical meaning about the anisotropy of the sample and the tensorial rep-
resentation of the refractive index is the consequence of an unknown rotation of the sample
with respect to its axis and the experiment coordinate system. It has been discussed in section
3.C of the manuscript that how the eigen-value characterization of the refractive index tensor
can help to find some 3D parameters correlated with physical and inherent meanings. In fact,
eigenvalues and eigen-vectors of a tensor are invariant under any unitary transformation such as
coordinate rotation. In each voxel of the sample, the difference between the eigen-values of the
3D refractive index tensor can represent the birefringence of the sample and the orientation of the
eigen-vector corresponding to the bigger (smaller) eigen-value can represent the direction of the
slow-(fast-)axis of the sample. In Fig. S8 you can see the 3D birefringence and also the orientation
of the slow-axis that are extracted from the eigen-value characterization of the refractive index
tensor for the numerical phantom.

7. DENOISING AND ITERATIVE RECONSTRUCTION

Due to the coherent noise which exists in the holography technique, we used a denoising technique
based on a 3D total-variation (TV) to a bit smooth-out our final reconstruction. In the denoising
problem, we minimize the following cost function, to calculate the image x̂ from the noisy image
x:

min
x̂

{
‖x̂− x‖2 + λRTV (x̂)

}
(S33)

in which, RTV (x̂) is the TV regularization and λ is the regularization parameter which determines
how strongly this TV denoising regularization applies. However, a very important issue is that
this denoising should not be confused with iterative techniques that are used to compensate
the missing-cone problem. In the missing-information problem, on the other hand, we have an
under-determined problem that we use total variation or a set of sparsity constraints to overcome.
This has to be done using the minimization of such a cost function:

min
x̂

{
‖A {x̂} − b‖2 + λRTV (x̂)

}
(S34)

for which A is some linear map which is usually the fourier transform in the case of missing-cone
problem for ODT [10]. A more clear discussion on this topic is presented in a work by A. Beck
and M. Teboulle [11] where they clarify the difference between the two problems of denoising
and deblurring (which solves missing frequencies similar to the missing cone problem in ODT).
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Fig. S8. Eigen-value characterization of the refractive index tensor of the digital phantom: (a)
Profile of the 3D Slow-axis direction at z = 0¯m for the ground-truth, (b) Profile of the 3D Slow-
axis direction at z = 0¯m for the 3D reconstruction, (c) Profile of the 3D Birefringence (µ1

n − µ2
n) of

the ground-truth, (d) Profile of the 3D Birefringence (µ1
n − µ2

n) of the 3D reconstruction.

As a result, in our work we just used TV regularization to denoise the final reconstructions
and we should not expect that the missing cone problem gets fixed. However, we also did an
iterative reconstruction using TV regularization to solve the missing cone problem that we wish
to extend in another work later. This method is based on the tensorial version of [10]. We use Eq.
S34 where,

A
{

V
}
= V

(
kx − kin

x , ky − kin
y , kz − kin

z

)
(S35a)

b =
kin

z
2π j
F2D


 Es

x1 Es
x2

Es
y1 Es

y2

 Ei
x1 Ei

x2

Ei
y1 Ei

y2

−1
 (S35b)

with the parameters similar to what is defined in the manuscript. The iterative reconstruction is
presented in Fig. S9. In the first row we show the ground-truth, in the second row we show the
direct Rytov-based reconstructions as presented in the main paper, and in the third row, we show
the iterative reconstruction using TV regularization. As is clear from this figure, the third-row
reconstructions do not include any elongation along z-axis in contrast to the second row. This
shows that similar to the sclar ODT, iterative techniques with a linear forward model, or even
nonlinear forward model can be used for polarization-sensitive ODT.

8. MUSCLE TISSUE EXPERIMENT

To show the importance of the PS-ODT for biological samples, we did the experiment for a
muscle tissue. Muscle tissue is birefringent due to its fibrous structures and A-bands (thick
filaments) inside the sarcomere of the muscle fiber. The fresh frozen muscle section is embedded
in cryo medium and cut with 20µm thickness. This thickness is enough to get a nice and strong
cross-polarized light and at the same time keep the single-scattering condition satisfied. In Fig.
S10, we present the cross-polarized light (Us

xy) intensity. In Fig. S11, the extracted holographical
phase of one of the projections is shown for the muscle tissue. In Fig. S11(a), the phase of the
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Fig. S9. Iterative reconstruction of the digital phantom: 1st row: ground-truth, 2nd row: direct
iterative reconstructions, 3rd row: iterative reconstruction using TV regularization.

50um

Fig. S10. The cross-polarized light amplitude |Us
xy|2 which is measured for the muscle tissue.

cross-polarized light is presented (Us
xy) while in Fig. S11(b) we show the phase of (Us

xa). In Fig.
S11(a), due to the zero background intensity, the background phase is random which makes the
calibration (because of the ambiguity of the phase of the reference beam) and phase unwrapping
difficult. On the other hand, using 45◦ polarization idea, the background phase of the complex
field (Us

xa) is nice, since the input and output polarizations have only 45◦ of miss-alignment and
as a result we have a background intensity. This helps to unwrap and calibrate the phase of the
complex fields easily and then convert the reconstructions to the XY coordinate system.
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