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Methods:  

Numerical simulations. We perform 2D simulations using the mode solver of the 
commercial software package COMSOL. In the quasinormal mode (QNM) simulations, the 
simulation area is defined as a circle with a radius of 600 nm surrounded by a 300-nm-thick 
perfect matching layer (PML). The scattering field simulations for single NW and NW pairs 
are performed in a 1.6 µm box with 200-nm-thick PML surrounding it. The full-field profile 
used to calculate ߙୱ୧୫ and thereby retrieve the coupling coefficient κ is then calculated by 
summing up the scattering field and the background incident field. In the full-field 
simulations, we apply periodic boundary conditions and two ports along the light propagation 
direction to simulate the properties of the arrays. To simplify the analysis of the resonant 
modes, Si NWs are all suspended in the air with a constant refractive index of 4 in QNM and 
scattering efficiency simulations except Fig. 3c. In Fig. 3c and supplementary Fig. 4, Si NWs 
are placed on a sapphire substrate. The refractive index of sapphire is set as 1.77, and the real 
dispersion and optical absorption of Si are included in the simulations.  

 
Sample fabrication. We start the fabrication with a 1 cm square 500-nm-thick single-

crystalline Si on sapphire substrate that is commercially available from MTI-Corp. The 
thickness of the Si slab is thinned down to 50 nm by reactive ion etching (Lam Research TCP 
9400 Poly Etcher). A 70 nm thick hydrogen silsesquioxane (HSQ) layer, serving as a 
negative-tone electron beam resist, is then spin-coated on the Si slab, and a conductive 
polymer layer (E-Spacer 300Z) is also spin-coated to reduce the electron charging effects in 
the nonconductive substrate during the electron beam exposure. The electron beam 
lithography is then performed using a JEOL 6300 100 kV system. The chosen beam current is 
1 nA and the base electron beam dose is set to ∼2000 μC/cm2. The development is then 
performed in 25% tetramethylammonium hydroxide for 2 mins. Finally, reactive ion etching 
is used again to transfer the HSQ hard mask patterns into the Si slab, and the remaining HSQ 
hard mask pattern is removed by wet-etching in a 2% hydrogen fluoride solution for 1 min. 

 
Optical measurements. We perform the optical scattering measurement using a Nikon C2 

confocal microscope. Light from a halogen lamp is first polarized 45° with respect to the NW 
orientation and top-illuminated through a ×20 objective (Nikon CFI Achro LWD 20X, NA = 
0.4, working distance = 3.9 mm) for bright-field reflection measurements. The reflection 
signal is then collected by the same ×20 objective (NA = 0.4) and polarization-filtered by the 
second polarizer orthogonal to the first one for cross-polarized detection. The reflection 
optical images of the samples are taken by a Nikon DS-Fi1 camera. A confocal scanner with a 
30 µm pin hole is used to spatially select the signal which is analyzed using a SpectraPro 
2300i spectrometer (150 lines/mm, blazed at λ = 500 nm) and Pixis Si CCD (−70 °C detector 
temperature). The reported spectra are the average of 10 frames (4 s integration time each). 
The dark spectrum is subtracted and all reflection spectra are normalized by the reflection 
spectra of a protected silver mirror (Thorlabs, PF10-03-P01) to correct the system response. 
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Figure S3. Quasi normal mode (QNM) reconstruction. (a) QNM reconstructed (solid lines) 
and simulated (dashed lines) scattering cross section of a NW pair as a function of the 

incident wavelength. (b) The scattering cross section contribution from the Fabry-Pérot mode 
in a NW pair as a function of the incident wavelength. 
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