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1. Comparison between CUTI and CUP 

Despite both being ultrafast imaging methods, compressed ultrafast tomographic imaging 
(CUTI) is conceptually different from compressed ultrafast photography (CUP) (summarized 
in Table S1). CUTI, by grafting the principle of sparse-view computed tomography (CT) [1] 
to the spatiotemporal domain, is a multiple-shot ultrafast imaging method but does not require 
any spatial encoding. CUP, on the contrary, is built upon single-shot coded-aperture imaging 
[2]. It uses compressed sensing (CS) and streak imaging to capture transient events with 
single camera exposure, which requires a random binary mask to spatially encode the input 
scenes [3, 4]. 

The principle of CUTI has been explained in detail in Main Text. The forward and 
backward models are written as Eqs. (1) and (2). The principle of CUP is different from CUTI. 
In data acquisition, a dynamic event ݔ)ܫ, ,ݕ  is first spatially encoded by a random binary (ݐ
mask. This process is denoted by the spatial encoding operator ࡯. Then, the encoded scene is 
sheared along one spatial direction, which is denoted by the temporal shearing operator ࡿ. 
Finally, the spatially encoded, temporally sheared scene is recorded by a camera, which is 
denoted by the spatiotemporal integration operator ࢀ. Overall, the forward model of CUP can 
be described as ܧ = ࡯ࡿࢀ ,ݔ)ܫ ,ݕ  (S1) .(ݐ

In CUP’s image reconstruction, ݔ)ܫ, ,ݕ መܫ is recovered by solving the minimization problem of (ݐ = arg	minூ ൜12 ܧ‖ − ଶଶ‖ܫ࡯ࡿࢀ + ߬Φ୘୚(ܫ)ൠ, (S2) 

where ߬ is the regularization parameter, and Φ୘୚  is the total-variation (TV) regularization 
function.  

Table S1. Comparison of operating principles between CUP and CUTI 

Image modality CUP [3] CUTI 

Required number of 
measurements 

Single-shot 
Multiple-shot ܧ = ሾܧଵ, ,ଶܧ … ,  ேሿ்ܧ

Theoretical foundation Single-shot coded-aperture imaging  Sparse-view computed tomography  

Forward 
model 

Spatial 
encoding 

Yes No 

Temporal 
shearing 

Single sweep 

Multiple sweeps with different 
shearing velocities ࡿ = ሾࡿଵ, ,ଶࡿ … ,  ࢀேሿࡿ

Spatiotemporal 
integration 

Yes Yes 

Formula ܧ = ࡯ࡿࢀ ,ݔ)ܫ ,ݕ ܧ (ݐ = ࡿࢀ ,ݔ)ܫ ,ݕ  (ݐ
Backward 

model 
Formula ܫመ = arg minூ ൜12 ܧ‖ − ଶଶ‖ܫ࡯ࡿࢀ + ߬Φ୘୚(ܫ)ൠ ܫመ = arg minூ ൜12 ܧ‖ − ଶଶ‖ܫࡿࢀ + ߬Φ୘୚(ܫ)ൠ 

Note:	ܰ is the total number of measurements. 
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3. Derivation of spatiotemporal projection angles in CUTI’s data acquisition 

In CUTI’s data acquisition, the information in the ݕ-axis and the ݐ-axis are coupled in the 
temporal shearing operation. Then, the information is recorded in each discrete pixel on the 
streak camera’s sensor by the spatiotemporal integration operation. Thus, the size of discrete 
pixels (denoted by ݌ୡ) and the maximum shearing velocity (denoted by ࢜୫ୟ୶) determine the 
maximum resolving capability of CUTI in the ݐ-axis. CUTI’s imaging speed,	ݎ, is calculated 
by  ݎ = ୡ݌|୫ୟ୶࢜| . (S5) 

In addition, the observation time window is determined by the sweep time, denoted by ݐୱ. 
Therefore, CUTI’s sequence depth is calculated by  

௧ܰ = .ୱݐݎ  (S6) 

As illustrated in Fig. 1 in Main text, the operations of temporal shearing and spatiotemporal 
integration are equivalent to a passive projection in the ݐ-ݕ plane. At the shearing velocity in 
the ݅ th acquisition (denoted by ࢜௜ ), the total shearing distance, in terms of the number of 
pixels, is expressed by  

ୱܰ = ୡ݌ୱݐ௜࢜ .  (S7) 

Thus, the projection angle in the ݅th acquisition, denoted by ߠ௜, is determined by ߠ௜ = tanିଵ ൬ ୱܰܰ௧൰ = tanିଵ ൬ .୫ୟ୶|൰࢜|௜࢜  (S8) 

Because the temporal shearing operation can be performed in both directions along the ݕ-
axis, ࢜௜ ∈ ሾ−|࢜୫ୟ୶|, ୫ୟ୶|ሿ࢜|+ . Therefore, the angle of spatiotemporal projection ߠ௜ ∈ሾ−45°, +45°ሿ.  
 
 

4. Compensation for aberrations in the image-converter streak camera  

Three sources contribute to the aberrations in the image-converter streak camera. Each 
aberration is carefully compensated for in the experiment. The first source of aberration 
comes from the trajectory length difference of photoelectrons. This aberration is calibrated by 
the curvature correction conducted during the initial test of this streak camera. The second 
distortion comes from the defocusing of photoelectrons deflected to the lower part of the 
streak images. This aberration is partially rectified by curvature correction and by limiting the 
sweep time. However, limited by the design of the streak tube, the residue of uncorrected 
aberration persists in the captured projection images, which contributes to the decrease of the 
image quality. The last source of aberration comes from the space-charge effect of 
photoelectrons at the focus of the electron imaging system in the streak tube. This aberration 
is minimized by balancing the incident laser pulse energy and the signal gain in the streak 
camera. In contrast, the rotating-mirror streak camera operates all-optically. Its design also 
satisfies the paraxial approximation. Thus, these sources of aberration do not exist, which 
results in better quality in the acquired projection images.  

It is worth noting that CUTI’s operation does not rely on the full elimination of the 
aberrations, as demonstrated from our experimental results presented in Figs. 3 and 4 in Main 
Text. Aberrations in the recorded projection images, nevertheless, can decrease both the 
spatial resolution and the temporal resolution. This effect has been illustrated in Fig. 3 in 
Main Text and discussed in the associated text. 
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