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The classification model training process in this work was based on our previous work 
initially developed for quantitative analysis with LIBS spectra from soil samples with a back-
propagation neural network (BPNN) [1]. In the present work, the method was adapted to the 
case of classification and identification of a collection of samples. The used neural network 
had 3 layers, with an input layer of 100 neurons corresponding to the 100 standardized 
selected features of each pretreated training spectrum, a hidden layer of 50 neurons, and an 
output layer of 3 neurons corresponding to the 3 output case-types. A 5-fold cross-validation 
optimization procedure was employed for neural network training. The implementation was 
applied to the ensemble of training spectra which is represented in Fig. S1, where a pretreated 
spectrum ௜ܵ௝௞ is the ݇௧௛ replicate of the ݆௧௛ sample in the ݅௧௛ case-type, and each pretreated 
spectrum contained 100 standardized selected spectral features.  

 
Fig. S1. Structure of the model training data set. An individual pretreated spectrum ௜ܵ௝௞ is the ݇௧௛ replicate of the ݆௧௛ 

sample in the ݅௧௛ case-type, with 100 standardized selected spectral features. 

Since all the replicate pretreated spectra were statistically equivalent, the index ݇ of a 
pretreated spectrum ௜ܵ௝௞ , was in fact a dummy one. A data configuration could be thus 
obtained with a randomly arrangement of the replicates of each sample of the training sample 
set. Given a such data configuration, the replicates of each sample were divided into 5 subsets 
containing an equal (or almost equal) number of pretreated spectra ൛ ௜ܵ௝ሼ௞భሽൟ, ൛ ௜ܵ௝ሼ௞మሽൟ… , ൛ ௜ܵ௝ሼ௞ఱሽൟ. The subsets of the different samples were then associated in 
such way that the training data set was divided into 5 subsets, containing each an equal (or 
almost equal) number of pretreated spectra from the 3 case-types of normal, cyst and cancer, ൛ ሼܵ௞భሽൟ, ൛ ሼܵ௞మሽൟ … , ൛ ሼܵ௞ఱሽൟ. A 5-fold iteration of cross-validation training by optimization with 

gradient descent then started with the first subset ൛ ሼܵ௞భሽൟ  as the test spectra, while the 
ensemble of the rest 4 subsets as the training spectra. The first iteration generated a model (1) 
which was tested with the subset ൛ ሼܵ௞భሽൟ, leading to an ensemble of identifications (1) for all 
the training samples. An identification of a sample among the 3 case-types of normal, cyst 
and cancer, was decided according to the majority of the individual identifications with the 
test spectra of the sample. A second iteration repeated the above process by using the second 
subset ൛ ሼܵ௞మሽൟ as the test spectra, while the ensemble of the rest 4 subsets as the training 



spectra, leading to an ensemble of identifications (2) for all the training samples. In the end of 
the 5 iterations, all the individual training spectra participated once as a validation spectrum. 
And the 5 ensemble of identifications (1) to (5) were generated with the 5 trained 
classification models. An ensemble of definitive identifications was assigned to all the 
training samples according to the majority of the 5 cross-validation identifications of a 
sample. The calibration performance of the trained models was then assessed by a comparison 
between the models-assigned case-type of each sample and their label value, and presented in 
the confusion matrix of the training samples. 
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