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Supplement 1

Consider first a general form of matrix elements ¢,, ¢, , V13 and V1 4

1= ([ PF,(F)F,(7)dS, (81)

D

where D is some integration area and for designation see Fig. 1. Then

I =[[""VF(FFFPdS.  (S2)

From Fig. 1 itis evident that

Pz (x+L/2) P =y +(x—L/2),

(S3)
— Y = Y
t =t =7
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From (S3) one can establish the following symmetry properties:
F(=y)=7(y), F(=y)=F(»),
P(=y)=-0(), ¢(=y)=-P(»), (S4)

7(=x) = F(x), F(=x) =7 (x),
P(=x) = =@(x), P(=x) =—P(x).

Assuming here the integration over Cartesian variables upon inversion
of the variable: y—=-y, one obtains:

I'= J;;[ef"l(‘ﬁ@F} (¥)F,(7)dS = I , which proves real-valuedness of

I along with the corresponding matrix elements. Note that here we
used the fact that integration area D in our examples is always

symmetric about the x-axis. For ¥}, the proofis analogous:
Vi = [[ 7 F (F)dS —22s [] 7 (F)dS =V, (S9)
SR SR

Since all the matrix elements are real-valued, one can use for them

instead of expressions (7) their symmetrized combinations, for
example, V, — (V,, +V,;)/2 . This would result in replacement of
corresponding  exponentials by  cosine

PUCEINEN cos[/(p—@)].

functions, e g

Consider now the properties of matrix elements <i |l;| ]>
According to definition, one has:
(1|7.|3) = [[e ™ F,(¥)LF,(7)e"?dS,
D

A A i S6
(2|L]4) =1 " F,(7)LF,(F)e "dS, (0)

where D is the total cross-section. Since iz* = —l: (do not confuse this
operation with the Hermitian conjugation), then it is obvious that
(1 [ 3) = —<2|fz |4> Analogously, one can also show that

L,
L) =—(2

iZ iZ
(1|l;|2> and <3|iz|4> matrix elements starting from their

3) To establish the connection between

definitions:

iZ

(1

(3|1.|4) = [[ e F,(F)F,(¥)e "ds,
D

2)=[[e " F,(F)LF,(¥)e "dS,
° (87)

one has to make in the integral for <3|i |4> the substitution

X — —Xx . Note that total cross-section’s area D is symmetric about the

y-axis and 1is invariant under transform x— —x. Since
l; <xV —yV, ~ then l;(—x) = —l; (x), a well as
iz (-y)= —l: (y). Allowing for (A4) and lAz* = —lt, this integral
becomes:

B|L|4)=~[[ " F,(7)LF,(F)e"ads = (1|.|2) . (S8)

Finally, it is possible to establish that all <i | iz | J > elements are real-
valued. Indeed, making the change of variable y — —y in (A6) one
obtains, for example:

(1

The same technique can be used for the other elements. Summarizing,

s

L

3)=—[[ " F(F)LF(7)eds = (1)1 |3) (S9)

the properties of (|| /) elementsare:

(|2 [3)==(2|L|4)", (1] |4)=-(2
B|714)=(|L|2)", m{|L|j)=0.
For diagonal elements (i|/. |) the procedure is analogous. For

example, for element <l | l; | l> =f e_”@]:] (7)1:]*7 (7)e"?dS one has:
D

A

/

z

3 (810)

|71y ==J1e" F,(7F)LF,(F)edSs =—(2|I.|2).
D

The proof of (3 | l; |3> =-— (4 |i |4> property is analogous. In
addition,

Q|71 = [Je ™ F,(F)LE,(F)e™dS = (x — —x)

D
=[] F(PILE(Peds =—(4|L]4).
D

and, in the like manner, (2 | iz |2> =— (3 | iz |3> . All diagonal elements
are real-valued. Indeed,

(1)L = [ F, (F)LE,(F)e™dS = (y = —)

L

= ([ P F,(PLE(F)e'ds = (1] ]1).
D
Summarizing, one obtains that
(L) ==(2|L]2)=G|L[3) =~ (4
Im(i|L |i)=0.

i|4

z

) (511)



Table S1. Reduced perturbation matrix elements <i |VR | m> /2/ and differences [3," - 5, between scalar propagation constants

m
\ -3 -2 -1 0 1 2 3 Analytical expression
l
17 29 | 256 | 1667 | -1811 | 1382 | -880 | (i[V|m)/2B.m”
3 - -
0 | 11822 | 22041 | 30070 | 22041 | 11822 | © B, —B.m"
60 | 223 | 422 | 607 | 737 | 628 | -425 | (i[V|m)/2p.m"
2 ~ ~
11822 | 0 | 10222 | 18251 | 10222 | o |-1182| B,-B.m”
99 | 191 | 297 | 295 | -352 | 299 | 201 | (i[Vx|m)/2B.m
-1 — —
22041 | 10222 | 0 | 8029 | 0 | -10222 | -22041 B, —B.m"
-93 138 | 164 | 143 | -164 | 138 | 93 | (i[Vx|m)/2B.m
0 —
-30070 | -18251 | -8029 | 0 | -8029 | -18251 | -30070 | B, ~fB.m”
201 | 299 | 352 | 205 | -297 | 191 99 | (i[ve|m)/2p.m™
1 P Po: 1
22041 | -10222 | 0 | 8029 | 0 |-10222 | -22041 B,—pB.m
425 | 628 | 737 | 607 | 422 | 223 | 60 | (i[V|m)/2B.m”
2 P P, 1
-11822 10222 | 18251 | 10222 | o | -11822| B,-B.m
880 | 1382 | -1811 | 1677 | -256 | -29 17 | (i[e|m)/2.m™
3 P Po: 1
0 | 11822 | 22041 | 30070 | 22041 | 11822 | © B, —B.m”




