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Abstract: This document provides supplementary information to "Coherent control of the multiple wavelength lasing 

of N2
+: coherence transfer and beyond ". 

 

In what follows, we present more details of our theoretical model and the corresponding calculated results. The 
content is organized in two parts: I. Model system and II. Time-domain pump-probe signal. 

I. Model system. 

 
Our experiments showed the ultrafast dynamics of electronic excitations of nitrogen cations, where the two-color 

seeding pulses are interacting with the molecules as successive process following the strong pumping by an infrared 

pulse. We adopt the three-level description as a simplified model for the molecules of interest [1]. The molecule-field 

interaction then reads 𝑉𝑉(𝑡𝑡) = 𝑉𝑉𝑏𝑏(𝑡𝑡) + 𝑉𝑉𝑐𝑐(𝑡𝑡) and 

𝑉𝑉𝑏𝑏(𝑡𝑡) = −Ω(𝑡𝑡 − 𝑇𝑇1)|𝑒𝑒⟩⟨𝑏𝑏|𝑒𝑒𝑖𝑖𝜔𝜔𝑒𝑒𝑒𝑒𝑡𝑡 − h. c. ,   𝑉𝑉𝑐𝑐(𝑡𝑡) = −Ω(𝑡𝑡 − 𝑇𝑇2)|𝑒𝑒⟩⟨𝑐𝑐|𝑒𝑒𝑖𝑖𝜔𝜔𝑒𝑒𝑒𝑒𝑡𝑡 − h. c. (1) 

  
where 𝑏𝑏, 𝑐𝑐 denote the two vibrational levels (𝑣𝑣 = 0, 𝑣𝑣 = 1) in the ground state X2Σ𝑔𝑔+ and 𝑒𝑒 denotes the level 𝑣𝑣′ = 0 

in the electronic excited state B2Σ𝑢𝑢+. Ω(𝑡𝑡 − 𝑇𝑇𝑛𝑛) describes the pulse shape in time domain such that 

Ω(𝑡𝑡 − 𝑇𝑇𝑛𝑛) = Ω𝑛𝑛𝑒𝑒−(𝑡𝑡−𝑇𝑇𝑛𝑛)2/2𝜎𝜎𝑛𝑛2𝑒𝑒−𝑖𝑖𝜔𝜔𝑛𝑛(𝑡𝑡−𝑇𝑇𝑛𝑛) (2) 
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and 𝜔𝜔𝑛𝑛 represents the pulse central frequency and 𝜎𝜎𝑛𝑛 is the temporal width of the pulse. 𝑇𝑇1 and 𝑇𝑇2 correspond to the 

delays τp-s1 and τp-s2 varied in experiments, by assuming the infrared pump pulse arrives at 𝑡𝑡 = 0. Notice that we 

have neglected the 𝑏𝑏 ↔ 𝑒𝑒 transition induced by pulse 2 and 𝑐𝑐 ↔ 𝑒𝑒 transition induced by pulse 1. This is due to the 

fact that the pulse bandwidth in the experiments cannot cover the vibrational splitting, namely, 2𝜋𝜋𝜎𝜎𝑛𝑛−1 < 𝜔𝜔𝑏𝑏𝑏𝑏. We 

adopt the density matrix formalism to describe the dynamics of the molecules, and it obeys the quantum Liouville-

von Neumann equation 

𝜌̇𝜌 = 𝑖𝑖[𝜌𝜌,𝑉𝑉(𝑡𝑡)] (3) 

in the interaction picture and we set ℏ = 1. The infrared pulse creates the populations on the three levels and the 

vibrational coherence 𝜌𝜌𝑏𝑏𝑏𝑏 , i.e., 𝜌𝜌0 = ∑ 𝜌𝜌𝑖𝑖𝑖𝑖|𝑖𝑖⟩⟨𝑖𝑖|𝑖𝑖=𝑏𝑏,𝑐𝑐,𝑒𝑒 + 𝜌𝜌𝑏𝑏𝑏𝑏|𝑏𝑏⟩⟨𝑐𝑐| + 𝜌𝜌𝑏𝑏𝑏𝑏∗ |𝑐𝑐⟩⟨𝑏𝑏| with ∑ 𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖=𝑏𝑏,𝑐𝑐,𝑒𝑒 = 1. This takes the 

rational when noting the fact of the incoherent nature of the strong-field ionization [2, 3]. The electronic coherence 

in N2
+ therefore dies out. The solution to Eq.(3) in Schrödinger picture is given by 

𝜌𝜌(𝑡𝑡) = 𝐺𝐺�(𝑡𝑡)𝒯𝒯�𝑒𝑒−𝑖𝑖 ∫ 𝑉𝑉�−(𝜏𝜏)d𝜏𝜏𝑡𝑡
−∞ 𝜌𝜌0, (4) 

where the superoperators are defined as 𝑉𝑉�−(𝜏𝜏) ≡ [𝑉𝑉(𝜏𝜏),∗]  and 𝐺𝐺�(𝑡𝑡) = 𝑒𝑒−(𝑖𝑖𝐻𝐻0,−−𝐿𝐿)𝑡𝑡  is the free propagator of the 

molecule in the absence of pulses. 𝐻𝐻0,− ≡ [𝐻𝐻0,∗] yields to the unitary part of the evolution and L stands for the 

relaxation superoperator dictated by the Redfield master equation or quantum stochastic Liouville equation, resulting 

in the non-unitary dynamics [4, 5]. 

 

The simplified model above is inadequate to describe the diatomic molecules in the sense of nonradiative transitions. 

Such transitions play a significant role in a variety of polyatomic molecules where the vibronic interaction results in 

the excited-state relaxation. These processes have been extensively measured in various time-resolved spectroscopic 

experiments, including the time-gated fluorescence and two-dimensional pump-probe spectroscopy [6-10]. We 

therefore include the excited-state relaxation processes, in order to model the experimental data with better accuracy. 

According to the recent experiment, laser pulses are inducing the vertical transitions from the ground-state vibrational 

levels 𝑣𝑣 = 0, 1. The N2
+, in fact, has the electronic excited energy surface (ES) showing a small shift of the minimum 

from the electronic ground state energy surface, depicted in Fig. 5(a) in the main text. This indicates that the lowest 

electronically excited level must have a lower energy than that induced by vertical transition from the level 𝑣𝑣 = 0. 

To elaborate this, we start off with the Hamiltonian for diatomic molecules interacting with the field [11-13] 

𝐻𝐻M = 𝐻𝐻𝑔𝑔(𝑝𝑝, 𝑞𝑞)|𝑔𝑔⟩⟨𝑔𝑔| + 𝐻𝐻𝑒𝑒(𝑝𝑝, 𝑞𝑞)|𝑒𝑒⟩⟨𝑒𝑒| − [Ω(𝑞𝑞)|𝑒𝑒⟩⟨𝑔𝑔| + Ω∗(𝑞𝑞)|𝑔𝑔⟩⟨𝑒𝑒|]  

𝐻𝐻𝑔𝑔(𝑝𝑝, 𝑞𝑞) =
𝜔𝜔0

2
(𝑝𝑝2 + 𝑞𝑞2),     𝐻𝐻𝑒𝑒(𝑝𝑝, 𝑞𝑞) = 𝜔𝜔𝑒𝑒𝑒𝑒0 +

𝜔𝜔1
2

(𝑝𝑝2 + (𝑞𝑞 − 𝑑𝑑)2)       (5) 

using Born-Oppenheimer and harmonic approximations, where d denotes the offset between the ground and electronic 

excited ESs and 𝜔𝜔𝑒𝑒𝑒𝑒0  gives the energy difference between the minimums of the two ESs. p and q are the dimensionless 

momentum and coordinate of the nuclear vibrations, respectively. Ω(𝑞𝑞) = 𝜇𝜇(𝑞𝑞)𝐸𝐸(𝑡𝑡)  and 𝜇𝜇(𝑞𝑞) =



−𝑒𝑒 ∫𝜓𝜓𝑒𝑒∗(𝑥𝑥, 𝑞𝑞)𝑥𝑥𝜓𝜓𝑔𝑔(𝑥𝑥, 𝑞𝑞)𝑑𝑑𝑑𝑑  provides the electronic transition dipole. The eigenfunctions of the molecular 

Hamiltonian in Eq. (5) are of the two-component form 

Ψ𝑛𝑛
(𝑔𝑔)(𝑥𝑥, 𝑞𝑞) = 𝜓𝜓𝑔𝑔(𝑥𝑥, 𝑞𝑞)𝜒𝜒𝑛𝑛

(𝑔𝑔)(𝑞𝑞),    Ψ𝑚𝑚
(𝑒𝑒)(𝑥𝑥, 𝑞𝑞) = 𝜓𝜓𝑒𝑒(𝑥𝑥, 𝑞𝑞)𝜒𝜒𝑚𝑚

(𝑒𝑒)(𝑞𝑞 − 𝑑𝑑) (6) 

where 𝜓𝜓𝑔𝑔(𝑥𝑥, 𝑞𝑞) and 𝜓𝜓𝑒𝑒(𝑥𝑥, 𝑞𝑞) are the eigenfunctions of electrons at electronic ground and the first excited states, 

respectively. 𝜒𝜒𝑛𝑛
(𝑔𝑔)(𝑞𝑞)  and 𝜒𝜒𝑚𝑚

(𝑒𝑒)(𝑞𝑞 − 𝑑𝑑)  represent the nuclear vibrational wave functions. The transition dipole 

moment is quantified by the matrix elements 

𝜇𝜇𝑒𝑒𝑚𝑚,𝑔𝑔𝑛𝑛 = �𝜇𝜇(𝑞𝑞)𝜒𝜒𝑚𝑚
(𝑒𝑒)(𝑞𝑞 − 𝑑𝑑)𝜒𝜒𝑛𝑛

(𝑔𝑔)(𝑞𝑞)𝑑𝑑𝑑𝑑 (7) 

in the basis of Franck-Condon principle. Obviously, the lowest electronically excited state has the energy 𝐸𝐸𝑣𝑣′=0 =

𝜔𝜔𝑒𝑒𝑒𝑒0  associated with the wave function Ψ0
(𝑒𝑒)(𝑥𝑥, 𝑞𝑞) = 𝜓𝜓𝑒𝑒(𝑥𝑥, 𝑞𝑞)𝜒𝜒0

(𝑒𝑒)(𝑞𝑞 − 𝑑𝑑) when neglecting the zero-point energy 

𝜔𝜔𝑖𝑖/2; 𝑖𝑖 = 0,1 of the nuclear vibrations. For N2
+, 𝐸𝐸𝑣𝑣′=0 = 25461.4cm−1, whereas the vertical transition resonant with 

391nm pulse has the frequency 𝑣𝑣00 = 25566.04cm−1 > 𝐸𝐸𝑣𝑣′=0 [14]. The detuning 𝛿𝛿 = 𝐸𝐸𝑣𝑣′=0 − 𝑣𝑣00 ≈ −105cm−1, 

which is much lower than the vibrational frequency of N2
+. Thus the ground-state vibrational wavefunction 𝜒𝜒𝑛𝑛

(𝑔𝑔)(𝑞𝑞) 

has a substantial overlap with the excited-state vibrational wave function 𝜒𝜒0
(𝑒𝑒)(𝑞𝑞 − 𝑑𝑑), leading to nonvanishing 

transition dipole moments 𝜇𝜇𝑒𝑒0,𝑔𝑔𝑛𝑛 defined in Eq. (7). The two pulses thereby pump the system into a superposition of 

several vibrational levels in the electronic excited manifold, namely, 

Ψ𝑒𝑒(𝑥𝑥, 𝑞𝑞) = 𝜓𝜓𝑒𝑒(𝑥𝑥, 𝑞𝑞) �𝐶𝐶0𝜒𝜒0
(𝑒𝑒)(𝑞𝑞 − 𝑑𝑑) + 𝐶𝐶1𝜒𝜒1

(𝑒𝑒)(𝑞𝑞 − 𝑑𝑑) + ⋯� (8)

with |𝐶𝐶0|2 ≫ |𝐶𝐶𝑖𝑖|2; 𝑖𝑖 = 1,2, …. Thus, the mode 𝑣𝑣′ = 0 dominates while the modes 𝑣𝑣′ ≥ 1 have fairly low probability 

to be populated. We can then neglect the incoherent population transfer towards the minimum of the ESs, as denoted 

by the blue wavy arrows in Fig. 5(a) in the main text. The N2
+ undergoes a near-resonant Raman process associated 

with the three-level scheme involving an effective detuning ∆≈ 105cm−1, as illustrated in Fig. 5(b) in the main text. 

In the three-level model, the levels 𝑣𝑣 = 0, 𝑣𝑣 = 1 and 𝑣𝑣′ = 0 are labelled by b, c, and e, respectively. 

 

II. Time-domain pump-probe signal 

   The frequency-resolved emission measured in the experiment is given by 𝑆𝑆(𝜔𝜔) = 2Im[𝐸𝐸∗(𝜔𝜔)𝑃𝑃(𝜔𝜔)]. Here 𝐸𝐸(𝜔𝜔) =

𝐸𝐸1(𝜔𝜔) + 𝐸𝐸2(𝜔𝜔) is the Fourier component of the positive-frequency part of the seeds where 

𝐸𝐸𝑖𝑖(𝜔𝜔) = 𝐸𝐸�𝑖𝑖(𝜔𝜔 − 𝜔𝜔𝑖𝑖)𝑒𝑒𝑖𝑖𝑖𝑖𝑇𝑇𝑖𝑖 (9) 

and 𝐸𝐸�𝑖𝑖(𝜔𝜔 − 𝜔𝜔𝑖𝑖) = ∫𝐸𝐸𝑖𝑖(𝑡𝑡)𝑒𝑒𝑖𝑖(𝜔𝜔−𝜔𝜔𝑖𝑖)𝑡𝑡𝑑𝑑𝑑𝑑 is the pulse envelop in frequency domain. The spectral measurement in the 

experiments requires the Fourier transform of emitted photons 𝑃𝑃(𝜔𝜔) = ∫𝑃𝑃(𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑, where 𝑃𝑃(𝑡𝑡) gives the far-field 

dipolar radiation. Quantum mechanically, the far-field dipolar radiation is the mean value of the dipole operator, 

namely, 𝑃𝑃(𝑡𝑡) = Tr[𝜇𝜇𝜇𝜇(𝑡𝑡)], given 𝜇𝜇 = 𝜇𝜇𝑒𝑒𝑒𝑒|𝑒𝑒⟩⟨𝑏𝑏| + 𝜇𝜇𝑒𝑒𝑒𝑒|𝑒𝑒⟩⟨𝑐𝑐| + h. c.. Molecular density matrix can be found by the 

3rd-order perturbative expansion with respect to molecule-field coupling, which yields 



𝑃𝑃(𝑡𝑡) = (−𝑖𝑖)3 � d𝑡𝑡3
∞

0
� d𝑡𝑡2
∞

0
� d𝑡𝑡1
∞

0
Tr(𝜇𝜇(𝑡𝑡3 + 𝑡𝑡2 + 𝑡𝑡1)[𝑉𝑉(𝑡𝑡2 + 𝑡𝑡1), [𝑉𝑉(𝑡𝑡1), [𝑉𝑉(0),𝜌𝜌0]]]) (10) 

using Hilbert space description. One has to recast Eq. (10) into Liouville space in order to describe the excited-state 

relaxation. 

428nm seed acts prior to 391nm seed 

Inserting Eq. (1) into Eq. (10) and invoking the impulsive approximation Ω(𝑡𝑡 − 𝑇𝑇𝑛𝑛) ∝ 𝛿𝛿(𝑡𝑡 − 𝑇𝑇𝑛𝑛)𝑒𝑒−𝑖𝑖𝜔𝜔𝑛𝑛(𝑡𝑡−𝑇𝑇𝑛𝑛) which 

is valid since the two-color pulses are temporally well separated, we obtain 

𝑃𝑃1(𝜔𝜔) = −
2𝜇𝜇𝑏𝑏𝑏𝑏

𝜔𝜔 − 𝜔𝜔𝑒𝑒𝑒𝑒 + 𝑖𝑖𝑖𝑖
�Ω1|Ω2|2(𝜌𝜌𝑐𝑐𝑐𝑐 − 𝜌𝜌𝑒𝑒𝑒𝑒)𝑒𝑒𝑖𝑖𝜔𝜔𝑒𝑒𝑒𝑒𝑇𝑇1 + Ω12Ω2∗𝜌𝜌𝑏𝑏𝑏𝑏𝑒𝑒𝑖𝑖(2𝜔𝜔𝑒𝑒𝑒𝑒𝑇𝑇1−𝜔𝜔𝑒𝑒𝑒𝑒𝑇𝑇2) + |Ω1|2Ω2𝜌𝜌𝑐𝑐𝑐𝑐𝑒𝑒𝑖𝑖𝜔𝜔𝑒𝑒𝑒𝑒𝑇𝑇2� 

 𝑃𝑃2(𝜔𝜔) = −
2𝜇𝜇𝑐𝑐𝑐𝑐

𝜔𝜔 − 𝜔𝜔𝑒𝑒𝑒𝑒 + 𝑖𝑖𝑖𝑖
�|Ω1|2Ω2(𝜌𝜌𝑐𝑐𝑐𝑐 − 𝜌𝜌𝑒𝑒𝑒𝑒)𝑒𝑒𝑖𝑖𝜔𝜔𝑒𝑒𝑒𝑒𝑇𝑇2 + Ω1|Ω2|2𝜌𝜌𝑏𝑏𝑏𝑏𝑒𝑒𝑖𝑖𝜔𝜔𝑒𝑒𝑒𝑒𝑇𝑇1�                                                            (11) 

where 𝑇𝑇1 > 𝑇𝑇2 is imposed and 𝜌𝜌𝑐𝑐𝑐𝑐 , 𝜌𝜌𝑒𝑒𝑒𝑒 and 𝜌𝜌𝑏𝑏𝑏𝑏 are the populations and vibrational coherence created by the infrared 

pulse, respectively. The full polarization reads 𝑃𝑃(𝜔𝜔) = 𝑃𝑃1(𝜔𝜔) + 𝑃𝑃2(𝜔𝜔) . Along the line of the experiment, we 

essentially calculate the time-resolved transmission at the pulse central frequency 𝜔𝜔𝑖𝑖 given by 2Im[𝐸𝐸𝑖𝑖∗(𝜔𝜔𝑖𝑖)𝑃𝑃𝑖𝑖(𝜔𝜔𝑖𝑖)], 

and subsequently find 

𝑆𝑆1(𝜔𝜔1;𝑇𝑇1) ≈
4|Ω1|2|Ω2|

𝛾𝛾
[|Ω2|(𝜌𝜌𝑒𝑒𝑒𝑒 − 𝜌𝜌𝑐𝑐𝑐𝑐) − 2|Ω1||𝜌𝜌𝑏𝑏𝑏𝑏| cos(∆𝑇𝑇1) cos(𝜔𝜔�1𝑇𝑇1 − 𝜔𝜔2𝑇𝑇2 + ∆𝑇𝑇2 + 𝜗𝜗)]        

𝑆𝑆2(𝜔𝜔2;𝑇𝑇1) ≈
2|Ω1||Ω2|2

𝛾𝛾
[|Ω1|(𝜌𝜌𝑒𝑒𝑒𝑒 − 𝜌𝜌𝑐𝑐𝑐𝑐) cos(∆𝑇𝑇2) − |Ω2||𝜌𝜌𝑏𝑏𝑏𝑏| cos(𝜔𝜔�1𝑇𝑇1 − 𝜔𝜔2𝑇𝑇2 + 𝜗𝜗)]             (12) 

by dropping the slowly-oscillating factor, where 𝜔𝜔�1 = 𝜔𝜔1 − ∆ and 𝜔𝜔1 − 𝜔𝜔𝑒𝑒𝑒𝑒 = 𝜔𝜔2 − 𝜔𝜔𝑒𝑒𝑒𝑒 = ∆. The phases of pulses 

and coherence 𝜌𝜌𝑏𝑏𝑏𝑏 have been absorbed into the phase 𝜗𝜗. Hence Eq. (1) in the main text is obtained. The signal given 

by Eq. (12) is plotted in Fig. S3, elaborating more details on the phase modulation between the oscillations of the two 

frequency components. 

391nm seed acts prior to 428nm seed 

For the scenario where the 427.8 nm pulse follows the 391.4 nm pulse, the polarization is given by 

𝑃𝑃1(𝜔𝜔) = −
𝜇𝜇𝑏𝑏𝑏𝑏

𝜔𝜔 − 𝜔𝜔𝑒𝑒𝑒𝑒 + 𝑖𝑖𝑖𝑖
�|Ω2|2Ω1(𝜌𝜌𝑏𝑏𝑏𝑏 − 𝜌𝜌𝑒𝑒𝑒𝑒)𝑒𝑒𝑖𝑖𝜔𝜔𝑒𝑒𝑒𝑒𝑇𝑇1 + Ω2|Ω1|2𝜌𝜌𝑏𝑏𝑏𝑏𝑒𝑒𝑖𝑖𝜔𝜔𝑒𝑒𝑒𝑒𝑇𝑇2�                                                  

𝑃𝑃2(𝜔𝜔) = −
2𝜇𝜇𝑐𝑐𝑐𝑐

𝜔𝜔 − 𝜔𝜔𝑒𝑒𝑒𝑒 + 𝑖𝑖𝑖𝑖
�Ω2|Ω1|2(𝜌𝜌𝑏𝑏𝑏𝑏 − 𝜌𝜌𝑒𝑒𝑒𝑒)𝑒𝑒𝑖𝑖𝜔𝜔𝑒𝑒𝑒𝑒𝑇𝑇2 + Ω22Ω1∗𝜌𝜌𝑏𝑏𝑏𝑏𝑒𝑒𝑖𝑖(2𝜔𝜔𝑒𝑒𝑒𝑒𝑇𝑇2−𝜔𝜔𝑒𝑒𝑒𝑒𝑇𝑇1) + |Ω2|2Ω1𝜌𝜌𝑐𝑐𝑐𝑐𝑒𝑒𝑖𝑖𝜔𝜔𝑒𝑒𝑒𝑒𝑇𝑇1� (13) 

where 𝑇𝑇1 < 𝑇𝑇2. Along the line of the experiment scanning 𝑇𝑇2, we calculate the time-resolved transmission at the pulse 

central frequency 𝜔𝜔𝑖𝑖 given by 2Im[𝐸𝐸𝑖𝑖∗(𝜔𝜔𝑖𝑖)𝑃𝑃𝑖𝑖(𝜔𝜔𝑖𝑖)], and subsequently find 

𝑆𝑆1(𝜔𝜔1;𝑇𝑇2) ≈
2|Ω2||Ω1|2

𝛾𝛾
[|Ω2|(𝜌𝜌𝑒𝑒𝑒𝑒 − 𝜌𝜌𝑏𝑏𝑏𝑏) cos(∆𝑇𝑇1) − |Ω1||𝜌𝜌𝑏𝑏𝑏𝑏| cos(𝜔𝜔�2𝑇𝑇2 − 𝜔𝜔1𝑇𝑇1 + 𝜗𝜗)]                     

𝑆𝑆2(𝜔𝜔2;𝑇𝑇2) ≈
4|Ω2|2|Ω1|

𝛾𝛾
[|Ω1|(𝜌𝜌𝑒𝑒𝑒𝑒 − 𝜌𝜌𝑏𝑏𝑏𝑏) − 2|Ω2||𝜌𝜌𝑏𝑏𝑏𝑏| cos(∆𝑇𝑇2) cos(𝜔𝜔�2𝑇𝑇2 − 𝜔𝜔1𝑇𝑇1 − ∆𝑇𝑇1 + 𝜗𝜗)] (14) 

by dropping the slowly-oscillating factor, where 𝜔𝜔�2 = 𝜔𝜔2 − ∆. 𝜗𝜗 is of the same definition as in Eq. (12). 
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