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Electron dynamics in laser-driven
atoms near the continuum threshold:
supplemental document

This supplemental document shows the details of the experimental setup, the quantum model,
comparison between theoretical calculation and experimental measurement, and the analysis of
the phase difference between different trajectories.

1. EXPERIMENTAL SETUP

The experiments have been performed with a home-made velocity-map imaging (VMI) spectrom-
eter with a base pressure of the interaction chamber maintained around 10−9 mbar. The 1800
nm femtosecond laser beam with a 55-fs pulse duration is generated from an optical parametric
amplifier pumped by a commercial Ti:sapphire laser system with a repetition rate of 1 kHz. The
laser-pulse energy is precisely controlled with a combination of a broadband achromatic λ/2 plate
and a thin-film polarizer. Before being introduced into the spectrometer, the laser beam at 1800
nm passes through an optical aperture with a diameter D of 4.0 mm and a 100-mm focal-length
planoconvex lens. The beam waist, w0, and the Rayleigh length, zR, are estimated to be 45 µm
and 3534 µm, respectively (see, e.g., [1]). A collimated supersonic beam of atomic Ar intersects
the laser beam at the focal spot. Excited Ar atoms (with principal quantum numbers n ≤ 75)
and ions Ar+ produced in the interaction of the laser field and the supersonic atomic beam are
detected by a position-sensitive Microchannel Plate (MCP) detector equipped with a delay-line
anode (DLD80 RoentDek Handels GmbH). See Ref. [2] for more experimental details.

Note that, to perform reliable intensity-dependent measurements of the RSE yields, it is
important to keep the laser-intensity uncertainty as low as possible. In our measurement, special
efforts were made to reduce the influence of laser-intensity fluctuation [2]. In detail, during the
data acquisition, the laser-pulse energy was measured by a photodiode and recorded shot-by-shot
by a home-made integration circuit. This circuit can transfer the measured pulse-energy signal to
a delayed NIM signal, which is recorded by a computer along with the Ar∗ signal for each laser
pulse. In the off-line analysis, only the data with pulse energies in a small range are chosen to
produce the spectra. In this way, the influence of the pulse-to-pulse intensity fluctuation can be
significantly reduced and the laser-intensity fluctuation can be controlled to be around 1.7% at
1800 nm.

2. THE QUANTUM MODEL

The RSE capture probability with the electron initially in the state |Ψi〉 is given by P = ∑nlm |Mnlm|2,
with

Mnlm = lim
t→∞

(−i)2
∫ t

−∞
dτ′

∫ τ′

−∞
dτ
〈
Ψnlm(t)

∣∣U (t, τ′
)

VUV
(
τ′, τ

)
HI(τ)

∣∣Ψi(τ)
〉

(S1)

where U (t, τ′) denotes the total time-evolution operator with the Coulomb and the laser fields
and UV (τ′, τ) the Volkov time-evolution operator. The operator HI represents the interaction
between the electron and the laser field and V denotes the Coulomb potential. In the limit t→ ∞,
the final state 〈Ψnlm(t)|U (t, τ′) can be approximated by the field-dressed Rydberg state

Ψd
nlm(r, τ′) = ψnlm(r)e

−iEnτ′ eir·A(τ′)e−i
∫ τ′
−∞ dτA2(τ)/2, (S2)

which approximately satisfies the time-dependent Schrödinger equation (TDSE). The state ψnlm(r)
is a field-free Rydberg state corresponding to the energy level En = −Z/(2n2), and the principal,
angular-momentum, and magnetic quantum numbers are n, l, and m, respectively. The times τ
and τ′ denote the instants of ionization and capture, respectively. More details can be found in
Ref. [3].

After the approximation 〈Ψnlm(t)|U (t, τ′) | → 〈Ψd
nlm(τ

′)|, Eq. (S1) does not reproduce the
modulation of the intensity-dependent excitation probability as it was calculated by the TDSE



for 1800 nm pulse [4] and is shown in Fig. 2(b) of the main text. We attempt to improve the
description by taking rescattering into account with the help of the Dyson equation

U
(
t, τ′

)
= UV

(
t, τ′

)
− i

∫ t

τ′
dτ′′U(t, τ′′)VUV

(
τ′′, τ′

)
. (S3)

Inserting Eq. (S3) into Eq. (S1) yields

Mnlm = lim
t→∞

(−i)2
∫ t

−∞
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(S4)

+ lim
t→∞

(−i)3
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(S5)

Here, the first term (S4) describes the direct transition from an intermediate Volkov state to a
field-free highly excited final state. This term disappears in the limit of t going to infinity since
the Volkov propagator UV(t, τ′) ∝ (t− τ′)−3/2 (see Eq. (7) of Ref. [3]) goes to zero when t� Tp
(Note that t ≥ τ′ ≥ τ and the integration over τ is restricted to the pulse length Tp). The same
argument does not apply to the second term (S5) because rather than the Volkov propagator
UV(t, τ′′) it displays the complete propagator U(t, τ′′). This contains the Coulomb propagator
U0(t, τ′′), which does not spread as (t− τ′′)−3/2.

We approximate the second term (S5) of the RSE transition amplitude with rescattering included
by

Mnlm =(−i)3
∫ ∞

−∞
dτ′

∫ τ′

−∞
dτ
∫ ∞

τ′
dτ′′

∫
d3 p

∫
d3k

× 〈Ψd
nlm(τ

′′)|V|Ψ(V)
p (τ′′)〉〈Ψ(V)

p (τ′)|V|Ψ(V)
k (τ′)〉〈Ψ(V)

k (τ)|HI |Ψi(τ)〉, (S6)

where, as above, we introduced the field-dressed Rydberg state 〈Ψd
nlm(τ

′′)|. The momenta after
and before rescattering, respectively, are denoted by p and k. The intermediate Volkov state is

|Ψ(V)
k 〉, which is a solution of the TDSE without taking the Coulomb potential into account. It can

be written as (in length gauge)

|Ψ(V)
k (r, t)〉 = 1

(2π)3/2 ei[k+A(t)]·re−i
∫ t
−∞ dτ[k+A(τ)]2/2. (S7)

Equation (S6) can be rewritten as

Mnlm =
(−i)3

(2π)6

∫ ∞

−∞
dtr

∫ tr

−∞
dti

∫ ∞

tr

dtc

∫
d3 p

∫
d3k Vnlm,pVp,kVk+A(ti),i eiS(p,k,ti ,tr ,tc), (S8)

where

Vnlm,p =〈ψnlm(r1)| −
Z
|r1|
|eip·r1 〉, (S9)

Vp,k =〈e−ip·r2 | − Z
|r2|
|eik·r2 〉, (S10)

Vk+A(ti),i =〈e
−i[k+A(ti)]·r3 |r3 · E(ti)|ψi(r3)〉. (S11)

The integration variables ti, tr, and tc can be interpreted as the instants of ionization, rescatter-
ing, and capture, respectively. The initial state is ψi(r), and the electric field can be described by
E(t) = E0 sin ωtêz and its vector potential A(t) = −

∫ t
−∞ E(τ)dτ, where E0 is the peak intensity

and êz an unit polarization vector. The field-free Rydberg states are given by

ψnlm(r) = Nnl Rnl(r)Ylm(θ, ϕ),

Nnl =
(2κn)3/2

Γ(2l + 2)

√
Γ(n + l + 1)
2nΓ(n− l)

, (S12)

Rnl(r) = (2κnr)le−κnr
1F1(−n + l + 1, 2l + 2, 2κnr),
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where κn = Z/n, Ylm(θ, ϕ) is a spherical harmonic, and 1F1(x, y, z) the confluent hypergeometric
function. The action is

S(p, k, ti, tr, tc) =
1
2

∫ tc

−∞
dtA2(t)+ Entc−

1
2

∫ tc

tr

dt[p+ A(t)]2− 1
2

∫ tr

ti

dt[k+ A(t)]2 + Ipti (S13)

with Ip the ionization energy.
For l 6= 0 the density of the Rydberg state has two centers at r+nlm ≡ rnlm and r−nlm = −r+nlm ≡
−rnlm (see Fig. S1(a) and Ref. [3]). Therefore, we decompose the Rydberg-state wave function as

ψnlm(r) = ψnlm+(r) + ψnlm−(r). (S14)

The functions ψnlm±(r) are concentrated around r = ±rnlm and satisfy ψnlm−(−r) = (−1)lψnlm+(r).
Writing ψnlm+(r) = ψnlm+(r− rnlm + rnlm) ≡ ψ̃nlm(ρ), where ρ = r− rnlm, we obtain [3]

Vnlm,p = −
∫

d3ρ
1

|ρ + rnlm|
ψ̃∗nlm(ρ)

[
eip·ρeip·rnlm + (−1)le−ip·ρe−ip·rnlm

]
. (S15)

For the saddle-point evaluation, we associate the exponentials exp(±ip · rnlm) with the action
and disregard the p dependence of exp(±ip · ρ). That is, we determine the variables ti, tr, tc, k
and p so that the action S± p · rnlm is stationary. This yields the saddle-point equations (see, e.g.
[3, 5, 6])

1
2
[k + A(ti)]

2 =− Ip, (S16)

[k + A(tr)]
2 =[p + A(tr)]

2, (S17)

A2(tc)/2 + En =[p + A(tc)]
2/2, (S18)

k =− 1
tr − ti

∫ tr

ti

dtA(t), (S19)

p =− 1
tc − tr

∫ tc

tr

dtA(t)± rnlm
tc − tr

. (S20)

Equations (S16), (S17), and (S18) describe, respectively, energy conservation in the tunneling, scat-
tering, and capture processes. Equation (S19) determines the intermediate electron momentum,
while Eq. (S20) takes into account that the electron is captured at one of the two positions ±rnlm.
The solutions (ti, tr, tc, p, k) of Eqs. (S16)–(S20) define the quantum orbits for specified n, l, and m.

For forward scattering, we have p = k, and Eq. (S17) is satisfied for all values of tr. For specified
p, the solution of Eq. (S16) for the time ti is known in analytical form [6]:

2 cos2(Re ωti) = 1 + γ2 + δ2 −
√

Q, (S21)

cosh(Im ωti) = −δ
cos θ

cos(Re ωti)
. (S22)

Here θ is the electron emission angle with respect to the laser polarization axis, γ =
√

Ip/(2Up)

is the Keldysh parameter [7], δ =
√

Ep/(2Up), Q = (1 + γ2 + δ2)2 − 2δ2[1 + cos(2θ)], and Up is
the ponderomotive energy for a linearly polarized laser field. For forward scattering, the emission
angle in the lab frame is θ = 0 or θ = π. Then, the solution for the rescattering time tr is obtained
from Eq. (S16):

pω(tr − ti)/A0 + sin ωtr − sin ωti = 0, (S23)

where A0 = E0/ω. From Eq. (S21) we obtain Re ti/T > 0.25, which guarantees that the electron
can revisit the ionic core after tunneling. In this paper, the ionization time ti is confined to the
interval 0 ≤ ti ≤ 6T and the pulse duration is 10T so that we can calculate the capture process
up to µ = 4 (see Section 5 of supplemental document for the definition of µ). For a short-range
potential, forward scattering is weak. In contrast, for a Coulomb potential, the matrix element in
Eq. (S10) is 〈e−ip·r2 | − Z

|r2| |e
ik·r2 〉 ∝ Z/(p− k)2, which for forward scattering is divergent. It has

to be regularized by introducing the ionization rate of the ground state [8].
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3. COMPARISON BETWEEN THEORETICAL CALCULATION AND EXPERIMENTAL MEA-
SUREMENT

Based on the experimental efforts mentioned above, in Fig. S1, the measured [solid lines] and
calculated [dashed lines] intensity dependence of the yields of the Rydberg states (Ar∗) and ion
(Ar+) at 1800 nm are presented. For the measurements, a prominent sequence of steps with a
period of about 50 TW/cm2 can be identified in the intensity dependence of the Ar∗ yields. It is
worth noting that the measured ionization yield is observed to saturate at about 270 TW/cm2,
while the measured excitation yield does not yet show saturation at this intensity. This is the
reason of the rapid increase of the measured ratio Ar∗/Ar+ in the high intensity regime as shown
in Fig. 1(b) of the main text. In fact, most of the Rydberg states quickly decay radiatively to the
ground state and only a fraction of the Rydberg states decaying to a long-lived metastable state
with an internal energy more than 10 eV can be detected by MCP detector. Considering that the
yield of Rydberg atoms is lower by orders of magnitude than that of the ions, the density of the
Ar supersonic beam has to be maintained high enough for a good signal-to-noise ratio of the
Rydberg atoms. Thus, if the laser intensity is too strong, the ion yields could be too high for our
MCP detector to respond linearly with respect to the ion numbers and the detection efficiency
would begin to saturate. As shown in Fig. S1, for laser intensity higher than 270 TW/cm2, the
detection efficiency already saturates. Note that the saturation intensity for the detector could be
lower than that of the single ionization of Ar (the ionization yield saturates at about 330 TW/cm2

for 800 nm laser with a similar pulse duration as shown in Fig. 4(b) of Ref. [2]). Meanwhile, the
calculated excitation yield after volume averaging also shows oscillation structure with a period
of about 50 TW/cm2, in good agreement with the experimental data including the locations of
the minima. Focal-volume averaging for yields of Ar∗ and Ar+ is performed by Eq. (B11) in
Ref. [2] for super-Gaussian beam with n = 2.6. The ionization yield is calculated by the SFA
theory without considering saturation. Note that the focal-averaged calculated Ar∗ shown in
Fig. S1 is multiplied by a factor of 2.4 for better comparison with the experiment.
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Fig. S1. Measured intensity dependence of the yield of ions Ar+ and excited atoms Ar∗, which
is multiplied by a factor of 100 to make the minima more noticeable, and corresponding calcu-
lated results after volume averaging are shown for comparison. The yields of Ar+ and excited
atoms Ar∗ are calculated by the SFA theory and the quantum model, respectively.

4. CAPTURE REGION OF THE RYDBERG WAVE FUNCTION

As in the semiclassical analysis of Ref. [3], the capture region in this paper is defined by the
condition that |ψ|2 ≥ 0.8|ψ|2max where |ψ|2 [see Eq. (S12)] is the density of the Rydberg wave
function with its maximum |ψ|2max. In Fig. S2(a), we show the density of the final Rydberg state
[9,8,0] (n = 9, l = 8, m = 0) in the x − z plane. The z-direction range that satisfies the above
capture criterium is 50 a.u. ≤ z ≤ 90 a.u. and −90 a.u. ≤ z ≤ −50 a.u., i. e., Rc = 40 a.u.

The capture region size Rc increases with increasing principal quantum number n. Since this is
dependent on the wavelength (n ∝ E1/2

0 λ), Rc shows a wavelength scaling of about λ1.1 for the
most populated Rydberg state as displayed in Fig. S2(b).
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Fig. S2. Spatial density distribution of the Rydberg state [9,8,0] (n = 9, l = 8, m = 0) in
the x− z plane. The two blue rectangles delineate the spatial capture region. (b): Wavelength
dependence of the capture region size Rc.
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Fig. S3. The LES energy spectra (solid lines) for µ = 1 (red) and µ = 2 (blue) for (a): 180
TW/cm2, (b): 200 TW/cm2, (c): 230 TW/cm2 at 1800 nm wavelength, for the same final Ry-
dberg state, Moreover, each panel displays the energy regions for the trajectories that can be
recaptured by the final Rydberg state [9,8,0]. For recapture at z > 0 (50 a.u. < z < 90 a.u.) they
are bounded by solid vertical lines (red for µ = 1 and blue for µ = 2) and shaded in the corre-
sponding color. For capture at z < 0 (-50 a.u. > z > -90 a.u.) the capture regions are bounded
by dashed lines.

5. ELECTRON TRAJECTORIES CONTRIBUTING TO THE RSE

According to the analysis of Ref. [6], the solutions for the forward-scattering time come in pairs,
which are denoted by the index µ = 0, 1, 2, 3, ... with increasing tr − ti. The solutions with µ = 0
do not contribute neither to the LES nor to RSE, but generate a smooth background. Thus both
the LES and the oscillation structure in RSE come from trajectories with µ > 0.

In order to compare the energy range of the electrons that contribute to RSE for different
intensities at specific wavelength, the LES energy spectra of µ = 1 and µ = 2 for three intensities
at 1800 nm are displayed in Fig. S3. From an analysis as presented in Fig. 3 of the main text, we
see from Fig. S3(a) that these energy ranges at 180 TW/cm2 are 0.051 ≤ Eµ/Up ≤ 0.067 for µ = 1
and 0.026 ≤ Eµ/Up ≤ 0.033 for µ = 2, both for recapture at z > 0. The energy ranges for capture
at z < 0 are also presented and indicated by the rectangular regions bounded by the vertical
dashed lines. Likewise, at 230 TW/cm2 in Fig. S3(c), the corresponding energy ranges for µ = 1
and µ = 2 are 0.047 ≤ Eµ/Up ≤ 0.063 and 0.024 ≤ Eµ/Up ≤ 0.032, respectively, and similarly in
Fig. S3(b) at 200 TW/cm2. This demonstrates that the energy ranges of the electrons contributing
to RSE slightly shift to lower energies with increasing intensity for fixed wavelength.

5



6. WAVELENGTH DEPENDENCE OF THE OSCILLATION PERIOD OF THE RSE PROB-
ABILITY

According to Fig. 3(e) of the main text, the oscillation period of the RSE probability mainly
depends on the intensity dependence of the phase difference between the recaptured µ = 1 and
µ = 2 LES trajectories. For trajectories considered in Figs. 3(a)-3(c) of the main text, both µ = 1
and µ = 2 LES trajectories with maximal weight are captured in the z > 0 region. Hence, using
Eqs. (S19)-(S20), the phase of the amplitude for capture at the position ±rnlm is

S(p, k, ti, tr, tc)± p · rnlm

= Entc + Ipti +
1
2

∫ ti

−∞
dtA2(t)− p2

2
(tc − tr)− p ·

(∫ tc

tr

dtA(t)∓ rnlm

)
− k2

2
(tr − ti)− k ·

∫ tr

ti

dtA(t)

= Entc + Ipti +
1
2

∫ ti

−∞
dtA2(t) +

p2

2
(tc − tr) +

k2

2
(tr − ti). (S24)

For the field A(t) = A0 cos ωt and for forward scattering (p = k) this is

S = Entc + Ipti + Upti +
Up

2ω
sin 2ωti +

p2

2
(tc − ti) (S25)

with the ponderomotive energy Up = A2
0/4.

We now follow the semiclassical analysis of Ref. [3]. The LES energies Eµ (µ = 1, 2, . . . ) are
given by the forward-scattering solutions (p = k) such that the ionization and rescattering times
satisfy

ωti =
π

2
+ ωτ, (S26)

ωtr =
π

2
+ 2π

(
µ +

1
2

)
−ωτ, (S27)

with the same τ ≡ τµ > 0, which is independent of the laser intensity. The LES energies then are
Eµ = p2

µ/2, pµ = −A(ti) = A0 sin ωτµ so that Eµ/Up ≈ 2ω2τ2
µ , since ωτµ � 1 [6].

The graphical construction employed in Ref. [6] can be utilized to show that if an electron on
an LES trajectory is to be recaptured at the position rnlm, then the time tc > tr has to satisfy

ωtc =
π

2
+ 2π

(
µ +

3
2

)
−ωτ. (S28)

with the same τ as above. LES solutions that allow for recapture at a specified position only
exist for a set of discrete intensities. Since, however, the recapture condition |ψ|2 ≥ 0.8|ψ|2max of
Sec. 4 in supplemental document allows for recapture within a range of width Rc, there will be
solutions within certain intensity ranges.

Recall that En denotes the energy of the Rydberg state. Since we are only interested in the
intensity dependence of the phase difference for µ = 1 and µ = 2, we drop the first two terms of
the phase (S25), which are independent on the laser intensity. Using Eqs. (S26)-(S28) we obtain up
to third order in ωτ � 1

∆S = S(µ = 1)− S(µ = 2) ≡ 2πCUp/ω (S29)

where
C = 5ω2(τ2

1 − τ2
2 )− 2ω2τ2

2 −
5

3π
ω3(τ3

1 − τ3
2 ). (S30)

For 1800 nm, the energies of the trajectories with the maximal weights for µ = 1 and µ = 2 are
0.065Up and 0.032Up, respectively. The corresponding ωτ1 and ωτ2 are 0.18 and 0.13, respectively,
resulting in C = 0.045. Then, a change of the phase difference ∆S by 2π corresponds to an intensity
change of ∆I = 50.4 TW/cm2, which is in good agreement with the calculated oscillation period
of the RSE probability.

The quiver amplitude Rq of the electron in the laser field is proportional to the square of the
laser wavelength λ, i.e., Rq = E0/ω2 ∝

√
Iλ2, where I is the laser intensity. On the other hand,

as shown in section 4 of this supplemental document, the size Rc of the capture region increases
with increasing principal quantum number n and shows a wavelength scaling of about λ1.1 for
the most populated Rydberg state [see Fig. S2(b)]. As a result, the energy range of the electrons
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Fig. S5. Calculated intensity dependence of the RSE probabilities corresponding to µ = 1 and
µ = 2 as well as their coherent sum at 1800 nm for the final Rydberg state (a): [6,5,0], (b): [9,8,0]
and (c): [12,10,0]. Intensity dependence of the phase difference between the RSE amplitudes for
µ = 1 and µ = 2 and that between two trajectories with the maximal weights of each µ for the
final Rydberg state (d): [6,5,0], (e): [9,8,0] and (f): [12,10,0].

that contribute to RSE shrinks and shifts to lower energies with increasing laser wavelength
[compare Fig. 3(c) and Fig. 3(b) in the text]. According to our calculation, the factor C exhibits a
wavelength scaling of about λ−1.9 as shown in Fig. S4(a). Therefore, the oscillation period scales
with the wavelength as ∆I ∝ λ−3C−1 ∝ λ−1.1, in agreement with the numerical-calculation result
of λ−1.2 presented in Fig. 4(b) of the main text. In addition, the dominant term of the factor C is
5(ω2τ2

1 −ω2τ2
2 ) as shown in Fig. S4(b), which is proportional to the energy difference between

the two capture trajectories with the maximal weights. We conclude that the oscillation period of
the RSE probability is mainly dependent on the above-mentioned energy difference.

Similar to Fig. 3(d) and Fig. 3(e) in the main text, we plot the RSE probabilities corresponding
to µ = 1 and µ = 2 and their coherent sum at 1800 nm for the final Rydberg states [6,5,0] and
[12,10,0], as well as their phase difference as a function of the laser intensity together with that of
[9,8,0] in Fig. S5. Clearly, for the Rydberg states [6,5,0] and [12,10,0] the effect of the interference
is similar to that of [9,8,0], and the oscillation period decreases as n increases. This is because
with increasing n, the capture region moves away from the core, so that the energies of the
capture trajectories having the maximal weights for µ = 1 increase. However, for µ = 2, the
energy of the capture trajectories with the maximal weights changes much more slowly. So the
energy difference between the two capture trajectories with the maximal weights increases as
n increases, giving rise to an increase of the factor C and a decrease of the oscillation period of
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the RSE probability. Hence, the results of Fig. S5 agree with the prediction of Eq. (S29). It should
be mentioned that although the oscillation period changes with n, the oscillation period of the
entire RSE probability is mainly determined by the Rydberg state [9,8,0], which dominates in the
intensity range discussed in this paper.
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